Al Applications Lecture 1
Real-World Problems and Task Solving with
Artificial Intelligence

SUZUKI, Atsushi
Jing WANG

2025-09-02

Contents

d__Infroduction
(.1 Learning Outcomes of ThisLectureg
(.2 Policyof ThisCourse

2__Preliminaries: Mathematical Notations

3 What is Al*/

4 Formulation of Tasks: Problems as Input-Output Relationships

b Numerical Representation of Real-World Entities
B.1 Natural Lanquags . - . - « « v o v et e e

b Hedefining Al: The Function Determination Problem
b.1 Input and Ouiput Spaces In Each Application Examplg

7 Summary and Future OutlooK
A T10day’s SUMMAIY . - « « v o o oo e e e e e e e e e e e

1 Introduction

The purpose of this lecture is to learn the fundamentals of Al, particularly Machine Learning
using Neural Networks, from the ground up.

1.1 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks.

» Formulate tasks that humanity seeks to solve as a relationship between input and
output.

* Mutually convert various real-world entities that humans handle and their correspond-
ing numerical sequences.

» Formulate Artificial Intelligence as a function determination problem.

1.2 Policy of This Course

This course will begin with fundamental topics such as the definitions of machine learning
and neural networks. While some students may have prior knowledge, there is a reason for
deliberately starting with basic definitions.

The field of Al and machine learning is developing very rapidly, and specific technolo-
gies or models that are widely known today (for example, the architecture of a particular
famous neural network) may well be outdated by the time you graduate. Therefore, this lec-
ture emphasizes the understanding of more general and universal concepts that will remain
applicable in the future, rather than learning specific techniques. To this end, we aim to re-
define Al and machine learning in the most general terms possible and to understand that
framework.

Furthermore, many Al-related courses first teach the individual components of Al (e.g.,
activation functions, optimization algorithms, specific neural network architectures) and then
introduce application examples. However, this course adopts the reverse approach.

1. First, we will treat Al as a functional black box and begin by learning "how to use it

2. Then, as needed, we will white-box the contents of the black box and uncover its
mechanisms.

This approach has the following advantages.

» Promotion of multifaceted understanding: Even when dealing with the same con-
cepts as other courses, approaching them from a different perspective leads to a
deeper understanding.

» Acquisition of practical knowledge: Even if you find it difficult to understand the
detailed theory during the course, you will at least acquire practical knowledge of "how
to use” Al.

+ Acquisition of universal knowledge: While the specific implementation methods of
Al change daily, the "framework for using Al” taught first in this lecture is relatively
resistant to change and will be useful for a long time.

+ Addressing realistic constraints: The details of the learning methods for recent
large-scale Generative Al are often kept as trade secrets and are not disclosed. It
is also theoretically known that there is no "panacea learning method for all problems,”
and practical learning recipes are inevitably case-by-case. Therefore, it is efficient to
understand the broad framework first and learn the specific detailed recipes when they
become necessary.

2 Preliminaries: Mathematical Notations

Here, we will organize the basic mathematical notations used in this lecture.
+ Definition:

— (LHS) = (RHS): Indicates that the left-hand side is defined by the right-hand side.
For example, a = b indicates that « is defined as b.

e Set:

— Sets are often denoted by uppercase calligraphic letters. E.g., A.
— x € A: Indicates that the element x belongs to the set A.

— {}: The empty set.

- {a, b, c}: The set consisting of elements a, b, c (Roster notation).

- {x € A|P(x)}: The set of elements in A for which the proposition P(x) is true
(set-builder notation).

— R: The set of all real numbers.

— R.o: The set of all positive real numbers.

— Rs¢: The set of all non-negative real numbers.
— Z: The set of all integers.

— Zso: The set of all positive integers.

— Zso: The set of all non-negative integers.

- [1,k]z ={1,2,...,k}: For a positive integer k, the set of integers from 1 to k.

* Function:
- f: X — Y: Indicates that the function f is a map that takes an element of set X
as input and outputs an element of set Y.

— y = f(x): Indicates that the output of the function f for an inputx e Xisy € V.
* Vector:

— In this course, a vector refers to a column of numbers arranged vertically.
— Vectors are denoted by bold italic lowercase letters. E.g., v.
— v € R": Indicates that the vector v is an n-dimensional real vector.

— The i-th element of a vector v is denoted as v;.

V1

Vo

» Matrix:

— Matrices are denoted by bold italic uppercase letters. E.g., A.
— A € R™": Indicates that the matrix A is an m x n real matrix.

— The element in the i-th row and j-th column of a matrix A is denoted as a; ;.

al ai2 -+ dip
azi1 a2 -+ dA2p

A=| . |- (2)
aAm,1 Am2 ' Amn

— The transpose of a matrix A is denotedas A". If A € R"™" then AT € R*", and

ail dz1 -+ am,
a2 4az2 -+ A4Am?2

AT =" o _ (3)
Aln AaA2n *°° Amn

is true.

— A vector is a matrix with 1 column, and its transpose can also be defined.
p! = Vi v2 -V eRY (4)

is true.

» Tensor:

— In this lecture, the word tensor simply refers to a multi-dimensional array. A vector
can be considered a 1st-order tensor, and a matrix a 2nd-order tensor. Tensors
of 3rd order or higher are denoted by underlined bold italic uppercase letters, like
A.

— Students who have already learned about abstract tensors in mathematics or
physics may feel uncomfortable calling a mere multi-dimensional array a tensor.
If we consider the basis to be always fixed to the standard basis and identify the
mathematical meaning of a tensor with its component representation (which be-
comes a multi-dimensional array), then the terminology is (at least) consistent.

* Note on Implementation:

— Unless otherwise specified, both vectors and matrices have real numbers (R) as
their components. However, when implementing them on a computer, finite sub-
sets such as floating-point numbers or integer sets with upper and lower bounds
are used. These subsets can be considered approximations of the set of real
numbers, but it is important to note that their discrete and finite nature may lead
to properties different from those of the set of real numbers (though their theoret-
ical analysis is not easy).

3 What is Al?

This lecture is about "Al Applications,” but what exactly is "Artificial Intelligence”? Defining
this term is extremely difficult.

The word ‘Artificial’, in the modern context, can be interpreted as almost synonymous
with “realized using a computer.” However, for the word ‘Intelligence’, there is no unified
definition even among experts, and it is uncertain whether a common understanding will be
reached in the future.

From an engineering perspective, however, whether a technology can be called "intelli-
gent” is not the essential question. What is important is whether that technology can con-
tribute to human society. Therefore, this lecture will not delve into any philosophical dis-
cussions regarding the definition of intelligence, and will define Al in an extremely practical
manner as follows.

Definition 3.1 (Definition of Al in this lecture). Artificial Intelligence (Al) is a procedure,
implemented on a computer, for solving some task that humans want to solve.

Based on this definition, we will consider how Al "solves tasks.”

4 Formulation of Tasks: Problems as Input-Output Rela-
tionships

Many of the tasks that humans want computers to solve can be formulated as a problem of
“given a certain input, return an appropriate output.” This is the idea of viewing a task as a
kind of transformation rule, that is, a correspondence between inputs and outputs.

Let’s look at some specific examples.

» Chat Al:
— Input: The text of a question or command typed by the user. (e.g., "What'’s the
weather today?”)
— Output: The Al's response text to that input. (e.g., "The weather in Tokyo is
sunny.”)
» Autonomous Driving:
— Input: Information obtained from numerous sensors such as camera images,
LiDAR (laser sensors), GPS, and vehicle speed sensors.

— Output: Signals for controlling the vehicle, such as the steering wheel angle and
the amount of accelerator or brake depression.

Text-to-Image (Image Generation Al):

— Input: A sentence describing the content of the image to be generated (prompt).
(e.g., ”A cat flying in space, oil painting style”)

— Output: Image data generated according to the instructions in the input text.

Medical Diagnosis from Images:

— Input: Medical image data such as X-rays, CT scans, or MRI images.

— Output: The diagnosis determined from the image. For example, a label indicat-
ing whether a lesion is "positive” or "negative.”

Fraudulent Credit Card Use Detection:
— Input: Various pieces of information from when a credit card is used (transaction
time, location, amount, purchase item category, past usage frequency, etc.).

— Output: A judgment indicating whether the transaction is "highly likely to be fraud-
ulent” or "a normal transaction.”

As these examples show, even seemingly completely different tasks share a common
structure of “input — output.”

5 Numerical Representation of Real-World Entities

What computers can handle are, fundamentally, bit strings of Os and 1s, or the byte strings
and numbers they form. Therefore, to process the various inputs and outputs seen in the
previous section on a computer, they must first be converted into numerical data. This
conversion rule is defined by humans according to the task.

Below are examples of conversion rules between representative entities and numerical
data.

5.1 Natural Language

A sentence is a sequence of characters. The rule that maps each character to a specific
byte sequence is called a character encoding.

» ASCIl (American Standard Code for Information Interchange): Maps alphabets,
numbers, symbols, etc., to 7-bit (usually 1-byte) integers. For example, ‘A* is 65, and
‘B*is 66. The ASCII code table for representative printable characters is shown below.

Dec Hex Char | Dec Hex Char | Dec Hex Char | Dec Hex Char
32 20 (space) | 56 38 8 80 50 P 104 68 h
33 21 ! 57 39 9 81 51 Q 105 69 [
34 22 ? 58 3A : 82 52 R 106 6A j
35 28 # 59 3B ; 83 53 S 107 6B k
36 24 $ 60 3C [84 54 T 108 6C I
37 25 % 61 3D = 85 55 U 109 6D m
38 26 & 62 3E ¢ 86 56 Vv 110 6E n
39 27 ’ 63 3F ? 87 57 W | 111 6F o
40 28 (64 40 @ 88 58 X 112 70 p
41 29) 65 41 A 89 59 Y 113 71 q
42 2A * 66 42 B 90 5A Z 114 72 r
43 2B + 67 43 C 91 5B [115 73 S
44 2C , 68 44 D 92 5C \ 116 74 t
45 2D - 69 45 E 93 5D] 117 75 u
46 2E . 70 46 F 94 5E " 118 76 v
47 2F / 71 47 G 95 5F _ 119 77 w
48 30 0 72 48 H 9% 60 ‘ 120 78 X
49 31 1 73 49 I 97 61 a 121 79 y
50 32 2 74 4A J 98 62 b 122 7A z
51 33 3 75 4B K 99 63 c 123 7B {
52 34 4 76 4C L 100 64 d 124 7C —
53 35 5 77 4D M 101 65 e 125 7D
54 36 6 78 4E N 102 66 f 126 7E -
55 37 7 79 4F O 103 67 g

~

« UTF-8" (Unicode Transformation Format-8): This is one of the encoding schemes
of the Unicode standard, which includes characters from all over the world, including
those from the Chinese character cultural sphere (Chinese characters (a.k.a. Hanzi,
Kanji), Hangul, Hiragana, Katakana). It represents a single character with a variable-
length byte sequence of 1 to 4 bytes. This allows characters like ‘A* to be represented
by 1 byte, same as in ASCII, while ‘& ‘ and many common Kaniji characters are repre-
sented by 3 bytes.

Here are some encoding examples for Chinese characters (3 bytes).

— "H” (Unicode: U+65E5) — UTF-8 (hex): E6 97 A5
— "K” (Unicode: U+672C) — UTF-8 (hex): E6 9C AC
— "E” (Unicode: U+8A9E) — UTF-8 (hex): E8 AA 9E

Here are examples of characters that use other byte lengths.

— Chinese character "#” (Unicode: U+9AD4) — UTF-8 (hex): E9 AB 94 (3 bytes)
— Greek letter ”Q” (Unicode: U+03A9) — UTF-8 (hex): CE A9 (2 bytes)
— Emoji "XIX?” (Unicode: U+1F602) — UTF-8 (hex): FO 9F 98 82 (4 bytes)

With this rule, any text can be converted into a unique byte sequence.

Remark 5.1 (On the Technical Significance of Emoji). Emoji, originating from Japan, are now
used worldwide. As a Japanese author, | would like to mention their technical significance,
which is important for regions like the Chinese character cultural sphere. Since Emoji are
multi-byte characters not included in ASCII, their popularization has globally motivated sup-
port for multi-byte characters. For example, people in the Chinese character cultural sphere
have also benefited from the support for multi-byte characters in various technologies, such
as the increasing number of web environments where Chinese characters can be used. Un-
til then, for the computer and web technology communities, which tended to be led by the
English-speaking world, supporting multi-byte characters like Chinese characters was not
an urgent issue, and even if support was implemented, there were few ways to verify its
correctness. In that sense, the spread of Emoji is an important historical fact, for example,
for people in the Chinese character cultural sphere.

Also, as a Japanese author, | should note that the word Emoji comes from the Japanese
words "#2” (e, picture) and 3" (moji, character). | have heard that many people in the
alphabetic cultural sphere mistakenly believe it originates from the word "emotion,” so | am
noting this for the record. The practice of assigning character codes to pictures was already
being done by Japanese newspaper companies in the 1950s®. Later, on Japanese mobile
phones in the 2000s before the spread of smartphones, emoji were so abundant that one

1 https://www.unicode.org/glossary/#UTF_8
2https ://www.utf8-chartable.de/unicode-utf8-table.pl?start=127744&number=1024

8

https://www.unicode.org/glossary/#UTF_8
https://www.utf8-chartable.de/unicode-utf8-table.pl?start=127744&number=1024

could communicate using them alone (based on the author’s own experience, though there
was no compatibility between different mobile carriers). However, the contribution of the
Gmail team in assigning Unicode points was also significant for the global spread of emoji
outside of Japan®.

dhttp://etlcdb.db.aist.go.ip/etlcdb/etln/etl2/e2code. ipg
bhttps ://japan.cnet.com/article/20409186/

5.2 Image

A color image is a collection of pixels. The color of each pixel can be represented by a
combination of the intensities of the three primary colors of light: Red, Green, and Blue.

» Bitmap representation: Let the height of the image be H and the width be W. If
the color of each pixel is represented by integer values from 0 to 255 for R, G, and
B respectively, a single color image can be represented as a 3rd-order integer tensor
I e Z¥>PW of size 3x HX W.

As a specific example, consider a small 2 x 2 pixel image. Suppose the color of each
pixel is as follows.

— Top-left: Red (R:255, G:0, B:0)

— Top-right: Green (R:0, G:255, B:0)

— Bottom-left: Blue (R:0, G:0, B:255)

— Bottom-right: White (R:255, G:255, B:255)

This image is represented as a 3 x 2 x 2 tensor I like this:

255 0 0 255 0 0
I,= I = . I, =
—R [] =G o 255] —B [255 255]

0 255
Here, 1,,1.,1, are the 2 x 2 matrices corresponding to the red, green, and blue chan-
nels, respectively.

5.3 Video

A video is a sequence of images that change over time.

» Tensor representation: Add a time dimension to the tensor representation of an im-
age. A video with T frames can be represented as a 4th-order tensor V e Z3*TxHxW of
size3xTxHXW.

http://etlcdb.db.aist.go.jp/etlcdb/etln/etl2/e2code.jpg
https://japan.cnet.com/article/20409186/

5.4 Audio

Audio is the vibration of air (a wave). When recorded with a microphone, it yields a voltage
signal that changes over time.

* PCM (Pulse Code Modulation): An analog signal, the sound wave, is divided at reg-
ular time intervals (sampling), and the amplitude at each point in time is approximated
by an integer value (quantization). This process is illustrated in the diagram below. A
smooth analog signal (blue line) is measured at regular time intervals (sampling), its
value is assigned to the nearest discrete level (quantization), and it is recorded as a
sequence of integers.

Amplitude

,,,,,,,,,,,,,,,,,,,, Analog signal
~-- Quantization levels

Time

Figure 1: Schematic diagram of sampling and quantization of an audio signal

In the case of stereo audio, this process is performed for both the left and right channels,
resulting in two integer sequences I, r, where I,r € ZP. Here, the number of samples D is
given by D = fL, using the duration L [s] and the sampling frequency f [s™'].

In this way, various real-world entities can be converted into numerical data (vectors or
tensors) based on clear rules.

6 Redefining Al: The Function Determination Problem

Now, let’s organize the discussion so far.

1. A task to be solved can be seen as a correspondence of "input entity — output entity.”

2. Input and output entities can be converted into “input numerical data — output numer-
ical data” through appropriate rules.

Through these two steps, the problem we want Al to solve ultimately reduces to the
problem of "given some input numerical data, compute the appropriate output numerical
data.”

In mathematical terms, this is none other than the problem of finding a function from
the set of all input numerical data (input space) to the set of all output numerical data
(output space).

10

Definition 6.1 (Engineering Goal of Al). To solve a task is to construct a function f on a
computer that imitates an unknown ideal function f* : X — Y representing the input-output
relationship of that task.

Here, X is the set of input data (input space), and Y is the set of output data (output
space).

6.1 Input and Output Spaces in Each Application Example
Let’s redefine the previous application examples within this function framework.

e Chat Al:

— Input space X: The set of byte sequences encoded in UTF-8.
— Output space V: Similarly, the set of byte sequences encoded in UTF-8.

» Autonomous Driving: Let the number of sensors be D;, and the number of control
signals be D,,;.

— Input space X: A subset of the D;,-dimensional vector space containing real val-
ues from each sensor. X c RPin,

— Output space V: A subset of the D,,,-dimensional vector space containing real
values for each control signal. Y c RPow,

» Text-to-Image:

— Input space X: The set of byte sequences representing the prompt.
— Output space V: The set of tensors representing H x W pixel RGB images. Y =

Z3><H><W

* Medical Diagnosis from Images:

— Input space X: The set of tensors representing medical images. X c Z&H*W (¢
is the number of channels).

— Output space Y: The set representing the diagnosis results. Y = {0, 1} (0: nega-
tive, 1: positive).

* Fraudulent Credit Card Use Detection: Let there be D features for a transaction.

— Input space X: The set of real vectors consisting of D features. X c RP.

— Output space Y: The set representing the judgment result. Y = {0, 1} (0: normal,
1: fraudulent).

Thus, we can see that any task can be uniformly described as a problem of determining
a function f from an input space X to an output space V.

11

7 Summary and Future Outlook

In this lecture, we have reorganized the diverse tasks that Al tackles from a mathematical
perspective.

7.1 Today’s Summary

» Task as Input-Output: Many tasks that humanity seeks to solve can be formulated as
a problem of determining an output given an input.

* Numerical Representation of Entities: Real-world entities such as text, images, and
audio are converted into numerical data (vectors or tensors) that computers can han-
dle, according to clear rules like UTF-8 or RGB bitmaps.

» Al and the Function Determination Problem: From the above two points, solving a
task using Al can be equated to the problem of determining an appropriate function
f: X — Y from an input space to an output space.

7.2 Preview of the Next Lecture

We have seen that solving a task can be equated with "determining a function.” So, how
can this function f be realized on a computer? In particular, when the ideal function f* is
unknown, how can we make f ”learn” to be close to it?

In the upcoming lectures, we will learn about the neural network, which is a concrete
component of this function f, and unravel how it learns complex input-output relationships.

12

	Introduction
	Learning Outcomes of This Lecture
	Policy of This Course

	Preliminaries: Mathematical Notations
	What is AI?
	Formulation of Tasks: Problems as Input-Output Relationships
	Numerical Representation of Real-World Entities
	Natural Language
	Image
	Video
	Audio

	Redefining AI: The Function Determination Problem
	Input and Output Spaces in Each Application Example

	Summary and Future Outlook
	Today's Summary
	Preview of the Next Lecture

