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Introduction



1. Introduction: Purpose

The purpose of this course is to learn the fundamentals of AI in the application
context, especially Machine Learning using Neural Networks, from scratch.
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1.1 Learning Outcomes

At the end of this lecture, students should be able to:

• Formulate tasks that humanity seeks to solve as a relationship between input
and output.

• Mutually convert various real-world entities that humanity deals with and their
corresponding numerical sequences.

• Formulate Artificial Intelligence as a function determination problem.
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1.2 Approach of This Course

This course will start with fundamental topics such as the definitions of machine
learning and neural networks. Some students may have already studied these, but
there is a reason for deliberately starting with basic definitions.

The field of AI and machine learning is developing very rapidly, and specific
technologies and models that are widely known today may well be obsolete by the
time you graduate.
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1.2 Approach of This Course

This course emphasizes the understanding of more general and universal
concepts that will be applicable in the future, rather than learning individual
technologies.

Also, many AI-related courses first teach the individual components that make up
AI and then introduce application examples. However, this lecture adopts the
reverse approach.

1. First, we will treat AI as a functional black box and start by learning "how to
use it."

2. Then, as necessary, we will white-box the contents of the black box and
uncover its mechanisms.
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1.2 Approach of This Course

This approach has the following advantages.

• Promoting multifaceted understanding: Leads to a deeper understanding.

• Acquiring practical knowledge: You will at least acquire the practical
knowledge of "how to use" AI.

• Gaining universal knowledge: The "framework for using AI" is relatively
resistant to change.

• Addressing realistic constraints: Details of large-scale models are often
trade secrets, and there is no "panacea learning method for all problems."
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Preliminaries: Mathematical
Notations



2. Preliminaries: Mathematical Notations

We will organize the basic mathematical notations used in this lecture.

• Definition:
• (LHS) := (RHS): Indicates that the left-hand side is defined by the right-hand

side.
• For example, a := b indicates that a is defined as b.

• Set:
• Sets are often denoted by uppercase calligraphic letters. E.g., A.
• x ∈ A: Indicates that the element x belongs to the set A.
• {}: The empty set.
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2. Preliminaries: Mathematical Notations

• Set Notation Examples:
• {a, b, c}: The set consisting of elements a, b, c (Roster notation).
• {x ∈ A|P (x)}: The set of elements in A for which the proposition P (x) is true

(set-builder notation).

• Common Sets of Numbers:
• R: The set of all real numbers.
• R>0: The set of all positive real numbers.
• R≥0: The set of all non-negative real numbers.
• Z: The set of all integers.
• Z>0: The set of all positive integers.
• Z≥0: The set of all non-negative integers.
• [1, k]Z := {1, 2, . . . , k}: The set of integers from 1 to k.
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2. Preliminaries: Mathematical Notations

• Function:
• f : X → Y : f is a map from a domain X to a codomain Y.
• y = f(x): The output of f for an input x ∈ X is y ∈ Y .

• Vector:
• In this course, a vector is a column of numbers.
• Denoted by bold italic lowercase letters (e.g., v).
• v ∈ Rn: an n-dimensional real vector.
• The i-th element is denoted as vi.

v =


v1
v2
...
vn


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2. Preliminaries: Mathematical Notations

• Matrix: Denoted by bold italic uppercase letters (e.g., A).
• A ∈ Rm,n: an m× n real matrix.
• The element in the i-th row and j-th column is denoted as ai,j .

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


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2. Preliminaries: Mathematical Notations

• Matrix Transpose: The transpose of A is denoted as A⊤.
• If A ∈ Rm,n, then A⊤ ∈ Rn,m.

A⊤ =


a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n



• Vector Transpose: A vector is a matrix with 1 column.
• The transpose of a column vector is a row vector.

v⊤ =
[
v1 v2 · · · vn

]
∈ R1,n
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2. Preliminaries: Mathematical Notations

• Tensor:
• In this lecture, we treat tensors as multidimensional arrays.
• A vector is a 1st-order tensor; a matrix is a 2nd-order tensor.
• Tensors of 3rd order or higher are denoted by an underlined, bold, italic,

uppercase letter, e.g., A.
• Note: For those familiar with abstract tensors, we assume a fixed standard basis,

identifying a tensor with its component representation.

• Note on Implementation:
• Theoretically, we use real numbers (R).
• In practice, computers use finite subsets (e.g., floating-point numbers).
• These subsets are approximations. Their discreteness and finiteness can cause

different properties from R.
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What is AI?



3. What is AI?

This course is about "AI applications," but what is "Artificial Intelligence" in the first
place? Defining this term is extremely difficult.

• Artificial: Realized using a computer.

• Intelligence: No unified definition exists, even among experts.

From an engineering perspective, what is important is whether that technology can
contribute to human society.
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3. What is AI?

This course will not delve into any philosophical discussions, but will define AI in a
very practical way as follows.

Definition (Definition of AI in This Lecture)
Artificial Intelligence (AI) is a procedure implemented on a computer that
solves some task that humanity wants to solve.
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Task Formulation: Problems as
Input-Output Relationships



4. Task Formulation: Problems as Input-Output Relationships

Many of the tasks that humans want computers to solve can be formulated as a
problem of "returning an appropriate output given a certain input."

This is the idea of viewing a task as a kind of transformation rule, that is, a
correspondence between input and output. Let’s look at some examples.
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4. Task Formulation: Examples

• Chat AI:
• Input: A question or command sentence. (e.g., "What’s the weather like

today?")
• Output: The AI’s response text. (e.g., "The weather in Tokyo is sunny.")

• Autonomous Driving:
• Input: Sensor information (camera images, LiDAR, GPS, etc.).
• Output: Vehicle control signals (steering, accelerator, brake).

• Text-to-Image (Image Generation AI):
• Input: A descriptive sentence (prompt). (e.g., "A cat flying in space, oil painting

style")
• Output: Generated image data.
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4. Task Formulation: Examples

• Medical Diagnosis from Images:
• Input: Medical image data (X-rays, CT scans, etc.).
• Output: A diagnosis label (e.g., "positive" or "negative").

• Fraud Detection:
• Input: Credit card transaction information (time, location, amount, etc.).
• Output: A judgment result (e.g., "likely fraudulent" or "normal").

As can be seen from these examples, even tasks that seem completely different
share a common structure of "input → output."
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Numerical Representation of
Real-World Entities



5. Numerical Representation of Real-World Entities

Fundamentally, what computers can handle are bit strings of 0s and 1s, or the
byte strings and numbers they form.

Therefore, to process the various inputs and outputs we saw in the previous
section on a computer, they must first be converted into numerical data. This
conversion rule is defined by humans according to the task.
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5.1 Natural Language

A sentence is a sequence of characters. The rule that maps each character to a
specific byte sequence is called a character encoding.

• ASCII (American Standard Code for Information Interchange):
• Maps alphabets, numbers, symbols, etc., to 7-bit (usually 1-byte) integers.
• For example, ‘A‘ is 65, and ‘B‘ is 66.

20/35



5.1 Natural Language: ASCII Table

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
32 20 (space) 56 38 8 80 50 P 104 68 h
33 21 ! 57 39 9 81 51 Q 105 69 i
34 22 " 58 3A : 82 52 R 106 6A j
35 23 # 59 3B ; 83 53 S 107 6B k
36 24 $ 60 3C < 84 54 T 108 6C l
37 25 % 61 3D = 85 55 U 109 6D m
38 26 & 62 3E > 86 56 V 110 6E n
39 27 ’ 63 3F ? 87 57 W 111 6F o
40 28 ( 64 40 @ 88 58 X 112 70 p
41 29 ) 65 41 A 89 59 Y 113 71 q
42 2A * 66 42 B 90 5A Z 114 72 r
43 2B + 67 43 C 91 5B [ 115 73 s
44 2C , 68 44 D 92 5C \ 116 74 t
45 2D - 69 45 E 93 5D ] 117 75 u
46 2E . 70 46 F 94 5E ^ 118 76 v
47 2F / 71 47 G 95 5F _ 119 77 w
48 30 0 72 48 H 96 60 ‘ 120 78 x
49 31 1 73 49 I 97 61 a 121 79 y
50 32 2 74 4A J 98 62 b 122 7A z
51 33 3 75 4B K 99 63 c 123 7B {
52 34 4 76 4C L 100 64 d 124 7C |
53 35 5 77 4D M 101 65 e 125 7D }
54 36 6 78 4E N 102 66 f 126 7E ~
55 37 7 79 4F O 103 67 g
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5.1 Natural Language: UTF-8

• UTF-8 (Unicode Transformation Format-8):
• Includes characters from all over the world.
• Uses a variable-length byte sequence (1 to 4 bytes).
• e.g., ‘A’ is 1 byte, while ‘日’ and ‘�� 1’ are 3 and 4 bytes.

Example (UTF-8 representations of letters and characters)

• ‘日’ (U+65E5) → UTF-8 (hex): E6 97 A5 (3 bytes)

• Greek ‘Ω’ (U+03A9) → UTF-8 (hex): CE A9 (2 bytes)

• Emoji ‘��’ (U+1F602) → UTF-8 (hex): F0 9F 98 82 (4 bytes)

With this rule, any text can be converted into a unique byte sequence.

1
U+1F602 https://www.utf8-chartable.de/unicode-utf8-table.pl?start=127744&number=1024
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5.1 Natural Language: Remark on Emoji

Remark (On the Technical Significance of Emoji)
Emoji, originating from Japan, are now used worldwide. Their popularization has
motivated worldwide support for multi-byte characters.

For instance, people in the Chinese character culture sphere (China, Japan,
Korea, Vietnam) have benefited from this, as it improved support for characters
like Chinese characters. Before emoji became popular, supporting these
character sets was not a high priority for the predominantly English-speaking
tech world.
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5.1 Natural Language: Remark on Emoji

Remark (On the Technical Significance of Emoji)

The word Emoji comes from the Japanese word "絵文字" (e-moji), meaning
"picture character," not from "emotion." The practice of assigning character
codes to pictures dates back to the 1950s in Japan.

Later, on Japanese mobile phones in the 2000s before the spread of
smartphones, emoji were so abundant that one could communicate using them
alone.

However, the contribution of the Gmail team in assigning Unicode points was
also significant for the global spread of emoji.
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5.2 Images

A color image is a collection of pixels. The color of each pixel can be represented
by a combination of the intensities of Red, Green, and Blue (RGB).

• Bitmap representation:
• An image of height H and width W can be represented as a 3rd-order integer

tensor I ∈ Z3×H×W .
• Each of the three H ×W matrices corresponds to the R, G, and B channels,

with integer values from 0 to 255.
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5.2 Images: Example

Consider a small 2× 2 pixel image:

• Top-left: Red (R:255, G:0, B:0)

• Top-right: Green (R:0, G:255, B:0)

• Bottom-left: Blue (R:0, G:0, B:255)

• Bottom-right: White (R:255, G:255, B:255)

This image is represented as a 3× 2× 2 tensor I, where the channels IR, IG, IB

are:

IR =

[
255 0

0 255

]
, IG =

[
0 255

0 255

]
, IB =

[
0 0

255 255

]
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5.3 Video & 5.4 Audio

• Video: A sequence of time-varying images.
• Add a time dimension to the image tensor.
• A video of T frames is a 4th-order tensor V ∈ Z3×T×H×W .

• Audio: A time-varying wave.
• PCM (Pulse Code Modulation): The analog signal is converted to a sequence

of integers through:
• Sampling: Measuring amplitude at regular time intervals.
• Quantization: Approximating each measurement with an integer value.
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5.4 Audio: PCM

Time

Amplitude

Analog signal

Figure 1: Schematic of sampling and quantization of an audio signal
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5. Numerical Representation: Summary

In the case of stereo audio, this process is performed for the left and right
channels respectively, resulting in two integer sequences l, r ∈ ZD.

In this way, various real-world entities can be converted into numerical data
(vectors or tensors) based on clear rules.
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Redefining AI: The Function
Determination Problem



6. Redefining AI: The Function Determination Problem

Now, let’s summarize the discussion so far.

1. The task we want to solve can be seen as a correspondence of "input entity
→ output entity."

2. Input and output entities can be converted into "input numerical data → output
numerical data" according to appropriate rules.

Through these two steps, the problems we want AI to solve ultimately come down
to the problem of "calculating the appropriate output numerical data given some
input numerical data."
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6. Redefining AI: The Function Determination Problem

This is none other than the problem of finding a function from the set of all input
numerical data (input space) to the set of all output numerical data (output
space).

Definition (Engineering Goal of AI)
To solve a task is to construct a function f on a computer that mimics an
unknown ideal function f∗ : X → Y that represents the input-output relationship
of that task.
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6.1 Input and Output Spaces in Each Application Example

• Chat AI:
• Input space X : Set of UTF-8 byte strings.
• Output space Y: Set of UTF-8 byte strings.

• Autonomous Driving:
• Input space X ⊂ RDin : Vectors of sensor readings.
• Output space Y ⊂ RDout : Vectors of control signals.

• Text-to-Image:
• Input space X : Set of byte strings (prompts).
• Output space Y = Z3×H×W : Set of image tensors.
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6.1 Input and Output Spaces in Each Application Example

• Medical Diagnosis from Images:
• Input space X ⊂ ZC×H×W : Set of medical image tensors.
• Output space Y = {0, 1} (0: negative, 1: positive).

• Fraud Detection:
• Input space X ⊂ RD: Real vectors of D transaction features.
• Output space Y = {0, 1} (0: normal, 1: fraudulent).

Thus, we can see that any task can be uniformly described as a problem of
determining a function f from an input space X to an output space Y.
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Summary and Future Outlook



7.1 Today’s Summary

In this lecture, we have organized the diverse tasks that AI tackles from a
mathematical perspective.

• Formulating tasks as input-output: Many tasks can be formulated as
determining an output for a given input.

• Numerical representation of entities: Real-world entities are converted into
computer-manageable numerical data (vectors and tensors).

• AI and the function determination problem: Solving a task with AI is
equivalent to determining an appropriate function f : X → Y .
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7.2 Next Time

We have seen that solving a task can be equated with "determining a function."
So, how can we realize this function f on a computer?

In particular, when the ideal function f∗ is unknown, how can we make f "learn" to
be close to it?

In the upcoming lectures, we will learn about neural networks, which are the
concrete components of this function f , and uncover how they learn complex
input-output relationships.
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