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1 Introduction

1.1 Review of the Previous Lecture

In the previous lecture, we re-examined the diverse tasks that Al should solve from a unified
perspective.

» The tasks we want computers to solve can be formulated as an input-output relation-
ship, where an appropriate output is returned for a given input.

» Real-world entities such as text, images, and audio can be converted into numerical
data (vectors or tensors) based on well-defined rules.

» From the above two points, we confirmed that solving a task with Al boils down to a
function determination problem: finding an appropriate function from a set of input
numerical data (input space) to a set of output numerical data (output space).

1.2 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks.

» Formulate a function determination problem as a parameter determination problem for
a parametric function.

» Explain what parameters and functions constitute basic Al/machine learning models
such as linear regression, logistic regression, decision trees, and k-NN.

» Formulate machine learning as a problem of determining the parameters of a paramet-
ric function using data, and explain the difference between training and inference in
machine learning.

1.3 Policy of This Lecture

The field of Al and machine learning is developing very rapidly, and specific models widely
known today are likely to be outdated by the time you graduate. Therefore, this lecture
emphasizes understanding more general and universal concepts that will be applicable in
the future and will not become obsolete, rather than learning individual technologies.

As a first step, we will learn about "parametric functions,” a mathematical framework com-
mon to many machine learning models, including neural networks. Understanding this con-
cept will allow you to view various models from a unified perspective and clearly distinguish
between the two major phases of Al development: training and inference. This distinction is
an essential foundation for understanding the applications of neural networks, which we will
learn about in subsequent lectures, as well as practical issues such as licensing.



2 Preparation: Mathematical Notations

Here is a list of the basic mathematical notations used in this lecture.
» Definition:

— (LHS) = (RHS): Indicates that the left-hand side is defined by the right-hand side.
For example, a = b indicates that « is defined as b.

+ Set:

— Sets are often denoted by uppercase calligraphic letters. Example: A.
— x € A: Indicates that the element x belongs to the set A.

— {}: The empty set.

— {a, b, c}: The set consisting of elements a, b, ¢ (set-builder notation).

- {x € A|P(x)}: The set of elements in A for which the proposition P(x) is true
(set-builder notation).

R: The set of all real numbers.

— R.q: The set of all positive real numbers.
— Rsg: The set of all non-negative real numbers.
— Z: The set of all integers.
— Zso: The set of all positive integers.
— Zso: The set of all non-negative integers.
* Function:
— f: X — Y: Indicates that the function f is a map that takes an element of set X

as input and outputs an element of set Y.

— y = f(x): Indicates that the output of the function f for an inputx € X is y € Y.
» Vector:

— In this course, a vector refers to a column of numbers.
— Vectors are denoted by bold italic lowercase letters. Example: v.

— v € R": Indicates that the vector v is an n-dimensional real vector.
Vi

1%
— The i-th element of a vector v is denoted as v;. v = 2

» Matrix:



— Matrices are denoted by bold italic uppercase letters. Example: A.
— A € R™": Indicates that the matrix A is an m x n real matrix.

— The element in the i-th row and j-th column of a matrix A is denoted as a; ;.

al ai2 - Adilnp
azi1 42 -+ AdAp
aAm,1 Am2 - Amn

— The transpose of a matrix A is denoted as A". If A € R™" then AT € R*™, and
its elements are given by (A7);; = aj;.

— A vector is also a matrix with 1 column, and its transpose can be defined. v" =

Vi V2 o Vp e R,
* Tensor:

— In this lecture, the word tensor simply refers to a multi-dimensional array. A vector
can be considered a 1st-order tensor, and a matrix a 2nd-order tensor. Tensors
of 3rd order or higher are denoted by underlined bold italic uppercase letters, like
A.

— Students who have already learned about abstract tensors in mathematics or
physics may feel uncomfortable calling a mere multi-dimensional array a tensor.
However, if we always fix the basis to the standard basis, we can identify the
mathematical tensor with its component representation (which becomes a multi-
dimensional array), so the terminology is (somewhat) consistent.

3 Parametric Functions

We have seen that solving a task can be formulated as a function determination problem.
Since we handle functions on a computer, the specification of that function must be uniquely
determined by numerical data that a computer can store (specifically, a bit string, often a
sequence of floating-point numbers).

Let’s formulate this idea mathematically.

Definition 3.1 (Parametric Function). If there exists a set © (the parameter space), and for
each element 6 € ©, a function fy : X — Y from an input space X to an output space Y
is defined, then the family of functions (fy)eco is called a parametric function. Each 0 is
called a parameter.

Given a parametric function, the problem of finding a function f is replaced by the prob-
lem of finding an appropriate parameter 6. Below are examples of parametric functions
used in the field of Al. The immediate goal of this lecture is to understand neural networks



as parametric functions, but here we will first look at some examples of parametric functions
from a broader perspective. There are several reasons for this.

* Linear regression and logistic regression are:
— Simple and clear examples for understanding how a function changes when its
parameters are changed.

— They can be considered special cases of simple neural networks and serve as a
foundation for later learning.

— They are basic methods widely used in the field of statistics and are valuable to
know as part of general knowledge.

 Decision trees and regression trees are:

— Good examples of parametric functions consisting of functions that cannot be
represented by (commonly used) neural networks with continuous activation func-
tions, and are useful for understanding what neural networks are "not”.

— Good examples of parametric functions where the dimension of the parameters
(the size and shape of the tree) is not fixed.

— Very effective for explaining machine learning models to non-expert clients due to
their intuitive nature of following a tree structure.

— They form the basis of advanced methods like Gradient Boosting Trees, which
demonstrate extremely high performance on tabular data such as customer infor-
mation held by companies.

» k-Nearest Neighbors (k-NN) is:

— Similar to regression and decision trees, a good example of a parametric function
consisting of functions that cannot be represented by neural networks, useful for
understanding what neural networks are "not”.

— A good example of a parametric function where the dimension of the parameters
is not fixed.

— An excellent first teaching material for understanding the steps of training and
inference, as its training algorithm is extremely trivial.

3.1 Example 1: Linear Regression

Consider the case where the input is a d;,-dimensional vector x € R%» and the output is a
1-dimensional real number y € R.

« Parameters: 6 = (w,b), where w € R%n, p e R.

* Function: f,, ,(x) =w'x+b = Z,iiri wix; + b.



1.0 .
Example 3.1. For di, = 2, with parameters w = [ 5 0] ,b = 0.5, the output for the input

3.0
X =
4.0

IS

Y = fowwy(®) = (1.0 X 3.0) + (2.0 X 4.0) + 0.5
=3.0-8.0+0.5=-45

(1)

Exercise 3.1. For parameters w = [ . 0 ] ,b = —1.0, calculate the output for the same input

3.0
as in Example 1, x = [ ]
4.0

Answer.

Y = fowp)(x) = (=0.5%3.0) + (3.0 x 4.0) + (=1.0)
=-15+12.0-1.0=9.5

(This shows that the output changes with different parameters for the same input.)

3.2 Example 2: Logistic Regression

The input is the same, x € R%n, but the output is a probability value y € [0, 1].
» Parameters: Same as linear regression, 6 := (w, b).

« Function: £, ,(x) = c(w"x + b). Here, o (z) = —— is the sigmoid function.

1+e~2

1.0 . 3.0 ,
Example 3.2. Using the same parameters w = [ ; 0] ,b = 0.5 and input x = [4 . as in

Example 1, first the output of the linear part is calculated as z = w "x + b = —4.5, and the final
output is

1
4.5
l+e (3)

1
~ ——— ~ (.011
1+90.017

y=o0(-4.5) =

. 3.0 . :
Exercise 3.2. For the same input x = L . as in Example 2, calculate the output using the

. -0.5
parameters from Exercise 1, w = [ o ] ,b=-1.0.

Answer. First, the output of the linear part is calculated as z = w'x + b = (-0.5x 3.0) + (3.0 X



4.0) = 1.0 =-1.5+12.0 - 1.0 = 9.5. The final output is

1
y=0(9.9) = ——=
l+e ; (4)

r————————— x (), 2
1+ 0.0000748 0-999925

3.3 Example 3: Decision Tree / Regression Tree

Decision trees and regression trees are examples where the parameters cannot be repre-
sented by a fixed-length vector. For an input x € R%», the output is determined by traversing
a tree structure.

Mathematical Formulation: A decision/regression tree is represented by a binary tree
structure. Nodes are assigned integer indices. Let the root node be 1, the left child of
node i € Z.( be left(i) = 2i, the right child be right(i) := 2i + 1, and the parent node be
parent(i) == |i/2]. The parameters 6 that define the tree structure and the behavior of each
node are defined by the following set of elements. 6 = (V, ((ji, t:))ievi,» (CDieViey)

* V c Z.o: Afinite set of indices of the nodes included in the tree. It must satisfy 1 € V,
and if k € V \ {1}, then parent(k) € V (reachable from the root).

The set of internal nodes V= {i € V | {left(i), right(i)} € V}.

The set of leaf nodes Vi..; = {i € V | {left(i), right(i)} NV = {}}.

The set of nodes must satisfy V = Viye U Yeat-

* ((Jirt:))iew,, - A sequence of parameters for each internal node i € Viy. j; € {1,...,din}
is the index of the input variable used for splitting, and 7; € R is the threshold.

* (c1)iev, - A sequence of output values for each leaf node I € Vi, For a regression
tree, ¢; € R; for a classification tree, ¢, is a class label.

The function fy(x) is defined as a recursive traversal starting from the root node 1.
fo(x) = traverse(x, 1) (5)

Here, the auxiliary function traverse(x, i) defines the process at node i as follows.
* If node i is a leaf node (i € Vieat), then traverse(x, i) = c;.

* If node i is an internal node (i € Vi), then

traverse(x, left(i)) ifx;, <¢
traverse(x,i) = (6)
traverse(x, right(i)) ifx;, > ¢



Example 3.3 (Regression Tree). Let di, = 2 and consider a regression tree defined by the
following parameters 6, (see Figure ).

* Node set vV ={1,2,3,6,7}
* (Derived from above) Internal node set Vi, = {1, 3}
+ (Derived from above) Leaf node set Vicar = {2,6, 7}
* Internal node parameters:

— Node 1: (jl,l‘l) = (1,2.5)
— Node 3: (J3,t3) = (2,0.0)

» Leaf node values:

— Node 2: ¢5 =10.0
— Node 6: ¢4 = -5.0
— Node 7: ¢7 =8.0

3.0
Calculate the output for the input x = [ . 0].

1. Evaluate at node 1 (root): x;, =x1 = 3.0 > 2.5 = 1, so proceed to the right child node
right(1) = 3.

2. Evaluate at node 3: x;, = x2 = -1.0 < 0.0 = 3, so proceed to the left child node
left(3) = 6.

3. Node 6 is a leaf node (€ Weat), and its value is cg = —5.0.

Therefore, the outputis y = fy, (x) = —5.0.

#1

X1 <25
#2 #3
10.0 x93 < 0.0
#6 #7
-5.0 8.0

Figure 1: Parameters 0, for the regression tree used in Example 3

Exercise 3.3. Consider a regression tree defined by the following parameters 6, (see Figure
2).



* Node set vV ={1,2,3,4,5}
* (Derived from above) Internal node set Vi, = {1, 2}
+ (Derived from above) Leaf node set Vicar = {3,4, 5}
* Internal node parameters:

— Node 1: (j1,t1) = (2,5.0)
— Node 2: (jo,12) = (1,1.0)

» Leaf node values:

— Node 3: ¢3 =20.0
— Node 4: ¢4 =1.5
— Node 5: ¢5=3.0

: : 3.0
Calculate the output for the same input as in Example 3, x = [ O]'

Answer. 1. Evaluate at node 1 (root): x;, = xo = —1.0 < 5.0 = #1, so proceed to the left
child node left(1) = 2.

2. Evaluate at node 2: x;, = x; = 3.0 > 1.0 = 19, so proceed to the right child node
right(2) = 5.

3. Node 5 is a leaf node (€ Weat), and its value is c5 = 3.0.
Therefore, the outputis y = fy, (x) = 3.0.

#1

X9 < 5.0
#2 ) #3
X1 < 1.0) 20.0
#4 #5
1.5 3.0

Figure 2: Parameters 6, for the regression tree used in Exercise 3

3.4 Example 4: k-Nearest Neighbors (k-NN)

k-NN is also an example where the parameters are of variable length.
Mathematical Formulation:

» Parameters: The sequence of past input-output data pairs itself. 8 .= D = ((x1, y1), (x2,y2),..., (x
The number of neighbors, k, can also be considered part of the parameters.

10



» Function: When a new input x,.,, is given,

1. Calculate the distance d(x .., x;) between x,., and all x; in the dataset D. The

distance is usually the Euclidean distance d(a, b) = ‘/Zj(aj - b;)>.
2. Find the set of indices Ni(x,..v) € {1,...,N} of the top k data points with the
smallest distances.

3. Aggregate their outputs (y; | i € Ni(x,ey)) to obtain the final output.

Jo(xnew) = aggregate((y; | i € Ni(xXnew))) (7)

The aggregation function aggregate is typically the mean for regression and the
mode (majority vote) for classification.

Example 3.4 (Regression). Let k = 3 and assume the parameters 6, consist of the following

four data points. D; = ((x1, y1) = ([8] ) = (E 10, (3. y3) = ([3] 120, (¥4, y4) =

4 . 2 . .
(H ,25)) Calculate the output for a new input x,,.,, = ) (using the mean for regression).

1. Calculate the squared Euclidean distance to each data point (the square root can be
omitted as it doesn’t change the order).

o d(Xpew,¥1)>=(2-02+(1-0)2=4+1=5
o d(Xpew,X2)°=2-1)2+(1-22=1+1=2
o dXpew,¥3)2=(2-3)2+(1-0)2=1+1=2
o d(Xpew,¥1)>=(2-4)2+(1-3)2=4+4=38

2. Ordering by distance gives x,x3,x1,x4.
3. Since k = 3, we choose the top three: (x2, y2), (x3,y3), (x1, y1).
4. Their y values are {10, 20, 5}.
5. Calculate their mean: y = 102043 = 35 & 11 67.
Thus, the output is y ~ 11.67.
Exercise 3.4. Let k = 2 and assume the parameters 0, consist of the following five data

1 -1 0
1]’]‘)’( ’4)’(|:2]’6)’(|:_1

2

2
points. Dy = (( .

4
,8), (H ,12)) Calculate the output for the

same new input as in Example 4, x,,.,, =

Answer. 1. Calculate the squared Euclidean distance to each data point.

11



1_
d(Xpew, 1 )2:(2—1)2+(1—1)2:1+0:1

;
* d(Xnews ; 2 =02-22+(1-32=0+4=4

o d(Xpew, ) 2=2-(-1)2+(1-22=9+1=10
* d(Xnews _01 )?=(2-002+(1-(-1))?=4+4=38

d(Xnew, ;1)2 =2-92+(1-02%=4+1=5

1 2
2. The closest is H (squared distance=1), and the next closest is H (squared dis-

tance=4).

1 2
3. Since k = 2, we choose these two points: (H 1), (H ,4).

4. Their y values are {1, 4}.

5. Calculate their mean: y = 4 = 2.5,
Thus, the output is y = 2.5.

Remark 3.1. Models like k-NN, which store the training data itself or have a non-fixed num-
ber of parameters, are often called non-parametric models. This is historical terminology
and slightly conflicts with this lecture’s definition of a "parametric function.” In this lecture,
we consider non-parametric models as a type of "parametric function with a variable-length
data structure as parameters.”

4 Scheme of Training and Inference

By viewing machine learning models as parametric functions (fs)¢<o, the problem of solving
a task is separated into two distinct phases. This distinction is legally important for the
practical use of neural network models, as will be discussed later.

 Training: The process of finding the “optimal” parameters 6* € ® that can best solve
the task, using given training data D (e.g., a number of input-output pairs ((x1,y1), ..., (XN, ¥n)))-
This is expressed as 0" = A((fy), D) using some learning algorithm 2A. In libraries
like scikit-learn, this process is also called fitting.

* Inference: The process of fixing the parameters 6* obtained through training, con-
structing the specific function fy:, and then calculating the output y = fp+(x) for a new,

12



unknown input x. This process is also called prediction (in fact, outside the context of
neural networks, the term prediction is more common. Alternatively, the output y itself
is sometimes called a prediction.).

This scheme of training and inference is a fundamental framework common to many machine
learning models (Figure B).

Training

Parametric
Function £,

Optimal Pa-

Training Data D
9 rameters 6*

Learning Algorithm A ——

Function defined
New Input x — by Optimal Pa- —— Predicted Output y
rameters fy-

Inference

Figure 3: Scheme of training and inference using a parametric function. In the training
phase, parameters that fit the data are determined. In the inference phase, predictions are
made using the function embedded with those parameters.

Remark 4.1 (Why Emphasize the Difference Between Training and Inference?). Students
who have already learned the basics of machine learning will know the difference between
training and inference (prediction) to some extent. Nevertheless, this course deliberately
takes the time to explain it because the distinction between training and inference is essen-
tial for understanding issues that are unavoidable when we, as users, utilize neural network
models, such as the publication and licensing of these models. For practical neural net-
works, the parameters for inference are often public, while the training algorithm is not. Also,
the issue of licensing, which is unavoidable in practice, does not guarantee that the license
is the same for the inference part and the training part. Therefore, without the distinction be-
tween training and inference, it is impossible to understand the essence of these problems.
Handling neural network models without understanding their licenses carries legal risks, so
it is dangerous to use them without a clear distinction between training and inference. The
concepts of publication and licensing for neural network models will be covered in detail later
in this course.

13



5 Specific Examples of Learning Algorithms

Inference is nothing more than the process of applying a new input x to a function fp-
constructed using pre-trained parameters 6* to obtain an output y, i.e., the computation
y = fp-(x). All the calculation examples we have seen so far correspond to this inference
phase.

On the other hand, the training phase, the process of finding the "optimal” parameters 6*
from given data D, differs greatly depending on the type of parametric function. Here, we
will look at specific examples of learning algorithms for some of the models mentioned so
far. However, the goal here is not to memorize the learning algorithms, but to understand
that training is indeed different from inference, that it is a process of determining parameters,
and that the actual process generally differs depending on the parametric function.

5.1 Example 1: Training of k-Nearest Neighbors (k-NN)

The learning algorithm for k-NN is one of the simplest imaginable. The learning algorithm
A simply stores the given training data D = ((x1,y1),..., (xn,yn)) as the parameters 6. In
other words, training is completed just by "memorizing the data.”

For example, the parameters 6; used in Example 4 of the previous section are precisely

0 1 3 4
the training data sequence D; = (( 0 ,0), ( 5 ,10), ( 0 ,20), ( 5 ,25)) itself. Models like

this, where most of the computation is deferred until inference time and the training process
simply involves storing the data, are sometimes called lazy learning models.

5.2 Example 2: Training of Linear Regression

For models like linear regression, where parameters are represented by a fixed-length nu-
merical vector, training is a more active process. In many cases, training is formulated as an
optimization problem of "minimizing a function that measures the ’badness’ of the model’s
predictions on the training data.”

Definition 5.1 (Loss Function). Given a parametric function f and a training data sequence
D, a function L that takes the parameters 6 of f as input and outputs a non-negative real
value L(0) representing how "bad” it is for the data sequence is called a cost function,
loss function, or objective function. The goal of the learning algorithm is then to find the
parameters 6* that minimize this cost function.

0" = arg min L(0) (8)

Remark 5.1 (On the terms Cost Function, Loss Function, and Objective Function). The term
objective function is general but can be used for cases where a smaller value is better as
well as when a larger value is better, so caution is needed. The term loss function clearly

14



indicates that a smaller value is better, but it is usually used only when the function depends
on f or @ only through fy, and it refers to the part that excludes regularization terms. The
term cost function is used for any function where a smaller value is better, but it is used
somewhat less frequently.

5.2.1 Least Squares Method

In linear regression, the parameters are w and . The Sum of Squared Residuals (SSR)
is widely used as a cost function (loss function) for the parameters of parametric functions
with real-valued outputs, including linear regression. Given training data O = ((xi’Yi))fip the
SSR is defined as follows. A smaller value of this indicates that the model fits the training
data well. The method of minimizing this cost (loss) is called the least squares method.

Definition 5.2 (Sum of Squared Residuals). Given training data D = ((x,-,yi))l?il, the Sum
of Squared Residuals (SSR) is defined as the sum of the squares of the differences (the
residuals) between the actual outputs y; and the model’s predicted values f(x;).

N
Lssr(w,b) = Z()’i — fowp) (x))?
i=1

N
= > (3i— (WTx; +b))?
i=1

5.2.2 Least Squares Solution

The least squares solution can be found analytically using linear algebra. First, to include the

Xi1
Xi,2
bias term b in the weight vector, we consider a new vector x;, .= | : | € R%*! by appending
Xidin
1
o
W
a 1to each input x; € R%n, Similarly, the parameters become w := | : | € R%*l Then, the
W,
b

model’s prediction can be written concisely as f(x;) = w'x;.
We represent the entire training data in matrix form. From the N data points (x;, y;), we

15



create a design matrix X € RV-4n+*! and a target variable vector y € R" as follows.

=T

X4 X1,1 X1,2 ... Xldiy, 1 Y1

=T

X X21 X292 ... X244 1 V2

2 » ’ »“In .
X=|"(=|. . | e Y= (10)

~T 1

xN XN,1 XN2 ... XNdj, YN

Then, the vector of predicted values y is y = Xw, and the loss function SSR can be written
using the 2-norm || - |2 as follows.

Lssr(%) = [ly = 3113 = lly - Xw||3 11)
=y - Xw)"(y - Xw)
We want to find the minimizer of this cost function (loss function) SSR, which is given by
the following normal equation.

Definition 5.3 (Normal Equation). Given a design matrix X € RV-4n*! and a target variable
vector y € RV, the following equation for w € R%n*! s called the normal equation.

(XTX)w =X"y. (12)

Theorem 5.1 (Least Squares Solution). Given a design matrix X € RV-4n*l and a target
variable vector y € R, it is a necessary and sufficient condition for w to be a solution to
the normal equation of Definition B3 that it minimizes the Sum of Squared Residuals (SSR)
Lssr (w). In particular, if X7 X is invertible (has an inverse), the normal equation has a unique
solution given by:

w = (X"X)"'XTy. (13)

Therefore, w* as expressed above is the unique vector that minimizes the SSR Lggr (w).

Proof. We find w that minimizes the loss L(w). We expand L(w) and set its gradient with
respect to w, V; L, to 0. (Readers interested in the details of differentiation with respect to a
vector may refer to the appendix at the end.)

LssrW) =yTy 2w Xy +w' X" Xw, (14)
ViLlssr = —2XTy +2X " Xw. (15)

Rearranging the equation Vy; Lgsr = 0, we see that it is equivalent to the normal equation
below.
(X"X)w=X"y. (16)

We confirm that the solution to this equation minimizes the loss. The Hessian matrix (second
derivative) of Lggr is V2L = 2X " X. For any vector z, 2" (X" X)z = (Xz)" (Xz) = || Xzl3 > 0,
so X" X is a positive semi-definite matrix. This means that Lssr (W) is a convex function, and

16



therefore Vy; = 0 is a necessary and sufficient condition for minimizing the Sum of Squared
Residuals (SSR) Lgsg(w).
If XT X is invertible, the equivalence between (X" X)w = X"y and w* = (X" X)"'X Ty is
clear.
i

Geometric Interpretation: The least squares method can be seen as the operation of
orthogonal projection of the target variable vector y onto the subspace spanned by the
column vectors of the design matrix X (the column space C(X)). In other words, it is the
problem of finding the vector y = Xw in the column space that minimizes the Euclidean
distance ||y — y|| to y. In this case, the error vector e = y — y must be orthogonal to the
column space C(X). This means that the inner product of e with every column vector of X
is0,i.e., X"e=0.

X' (y-Xw)=0 = X' Xw=X"y (17)

This is precisely the normal equation, showing that the least squares method is geometrically
calculating an orthogonal projection.

Example 5.1 (Least Squares Solution for Linear Regression). Suppose we are given the
following training data O, consisting of three data points.

Di = ((x1y1) = ([i

,—4.5), (X2, y2) = (H |L5), (x3,y3) = (H —15)  (18)

First, we construct the design matrix X and the target variable vector y.

3 4 1 -4.5
X=[10 1|, y=|15 (19)
011 -1.5
Next, we calculate X" X and X"y.
3 1 03 41
X'X=(4 0 1|f1 0 1
1 1 1({{0 1 1
Z (20)
10 12 4
=12 17 5]
4 5 3
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-4.5
1.5
-1.5

_|

<

Il
oW
=
— = O

~13.5+1.5 ~12.0
=| -180-15 |[=[-195
-45+1.5-15] |[-45

We solve the normal equation (X" X)w = X Ty.

10 12 4] [wi] [-12.0
12 17 5| |wa|={-195 (22)
4 5 3||b —4.5

Solving this system of linear equations (e.g., by calculating (X" X)~! and multiplying from
the left), the solution is

w1 1.0
w* = |wa| =1-2.0 (23)
b 0.5

Thus, training is the process of determining parameters to fit the data.
. 1.0 . .
Note that this result matches the parameters (w = o0 ,b = 0.5) used in the example in

the previous section. Please review that example to reconfirm how inference and prediction
can be done using the obtained function.

Exercise 5.1 (Least Squares Exercise). Suppose we are given the following training data
Dpg consisting of four data points.

3 2 0 1
Dp = ,9.9), ,—2.0), ,0.0), ,1.5 24
S s X G R .
Using the least squares method, find the parameters (w, b) of the linear regression model
that best fits this data.

Answer. First, construct the design matrix X and the target variable vector y.

9.5

, oy=| 25
Y=1lcy (25)

1.5

— O N W
— N O

18



Next, calculate X" X and X "y.

] 3 41
3 1 14 13 6
. 2 0 1
X'X=[40 21 =113 21 7
021
1111 6 7 4
111
_ J9s
3201 50 28.5-4.0+0+1.5 26.0
X'y=1[4 0 2 1 56 = [38.0+0+10.0+1.5| = [49.5
1 1 1 1] 1'5 9.5-2.0+5.0+15] [14.0

Solve the normal equation (X" X)w = X "y.

14 13 6| w1 26.0
13 21 7] |wa| =149.5 (26)
6 7 4)|b 14.0

Solving this system of linear equations, the solution is

wi -0.5
vt = |wo| = | 3.0 (27)
b -1.0

-0.5 . . .
This matches the parameters (w = [3 },b = —1.0) used in Exercise 1 of the previous

section.

5.3 Diversity of Learning Algorithms and Neural Networks

As we have seen, the learning algorithm for k-NN is just to store the data, while for linear
regression it is to minimize a loss function (specifically, by solving the normal equation).
Thus, different parametric functions require completely different learning algorithms. The
learning for decision trees (not detailed here, but generally a greedy algorithm that finds the
feature and threshold that best splits the information) also takes a different approach. This
need to consider a dedicated learning algorithm for each model is one of the cumbersome
aspects of learning machine learning.

In contrast, neural networks, which we will learn about from the next lecture onwards,
can represent a wide variety of parametric functions, from simple functions similar to linear
regression to extremely complex functions that handle images and audio, by changing their
structure (architecture). And one of its greatest strengths is that, despite being able to
represent such a wide variety of functions, its learning algorithm is unified. Specifically, most
neural networks can be trained under a common framework: calculating the gradient of the

19



loss function using backpropagation and minimizing the loss using stochastic gradient
descent (SGD) or its variants.

This "high expressive power” and "uniformity of learning method” are among the reasons
why neural networks form the core of modern Al technology.

6 Summary and Future Outlook

6.1 Today’s Summary

+ If a parametric function, where a specific function is determined by specifying the
values of its parameters, is given, many of the tasks that humans want to solve can be
reduced to a parameter determination problem.

» Various Al models such as linear regression, logistic regression, decision trees, and
k-NN can be understood uniformly as parametric functions.

» Machine learning is separated into a training phase, which finds the optimal parame-
ters of a parametric function from past data, and an inference phase, which calculates
the output for an unknown input using those parameters.

6.2 Next Time

This time, we viewed various machine learning models within the unified framework of para-
metric functions. This framework is an important foundation for understanding neural net-
works, which we will learn about from the next lecture onwards.

Next time, we will strictly define what a neural network is—a particularly expressive type
of parametric function that forms the core of modern Al technology— using the mathematical
tool of a Directed Acyclic Graph (DAG). Then, we will learn about the distinction between
"architecture” and "checkpoints,” concepts that are extremely important in the practical ap-
plication of modern Al.

A Appendix: Differentiation by a Vector

In the derivation of the least squares solution in the main text, we used the calculation of
differentiating a vector by a vector (gradient calculation). Here, we supplement the notation
and formulas used in that calculation. The notation and formulas in this appendix conform
to The Matrix Cookbook [f]].
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A.1 Definition of Gradient

X1

X
The derivative (gradient) of a scalar-valued function f(x) with respect to a vector x = _2 is

Xn
defined as a vector of partial derivatives with respect to each element (Denominator layout).

af
%
o0f(x) oy

ox =

Vef(x) =

0xn

A.2 Formulas Used in the Text

The following two formulas were used in the gradient calculation of the loss function in the
main text.

A.2.1 Formula 1: Derivative of a Linear Term

The gradient of the inner product (a scalar) of a constant vector a and a variable vector x

with respect to x is a itself.
d(a’x) .
ox
This can be confirmed by noting that a™x = Y, a;x;, and taking the partial derivative with

respect to each x; gives %, 2. aix; = a;. Summarizing this in vector form gives a.

(29)

A.2.2 Formula 2: Derivative of a Quadratic Form

The gradient of a quadratic form (a scalar) created from a constant matrix A and a variable
vector x with respect to x is as follows.

.
W =(A+ANx (30)
In particular, if the matrix A is symmetric (A = A7), this formula simplifies.

d(xTAx)

o—— =2Ax (if Ais symmetric) (31)
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A.3 Derivation of the Loss Function Gradient

Using the formulas above, we calculate the gradient of the loss function L(w) from the main
text.
Lw)=y'y-2w' X"y+w (X" X)w (32)

We differentiate each term of this equation with respect to w.
1. 1stterm y"y: This is a constant that does not depend on w, so its derivative is 0.

2. 2nd term —2w "X "y: This has the form —2a™w (where a = X "y). Using Formula 1, the

gradient of this term is:
o T vT
w

3. 3rd term w " (X" X)w: This has the form w™Aw (where A = X" X). Here, since A" =
(XTX)T=X"(X")T = X"X = A, the matrix A is symmetric. Therefore, using Formula
2 (for the symmetric case), the gradient of this term is:

AW (XTX)w)
oW

= 2(XTX)w (34)

Summing these up, we obtain the gradient equation shown in the main text.
Vol =0-2X"y+2X" Xw

=-2X"y+2X Xw
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