
AI Applications Lecture 2

Machine Learning Models and Parametric Functions

SUZUKI, Atsushi
Jing WANG



Outline

Introduction

Preparation: Mathematical Notations

Parametric Functions

Scheme of Training and Inference

Specific Examples of Learning Algorithms

Summary and Future Outlook

2/51



Introduction



1.1 Review of the Previous Lecture

In the previous lecture, we re-examined the diverse tasks that AI should solve from
a unified perspective.

• The tasks we want computers to solve can be formulated as an input-output
relationship.

• Real-world entities such as text, images, and audio can be converted into
numerical data (vectors or tensors).

• Thus, solving a task with AI boils down to a function determination problem:
finding an appropriate function from an input space to an output space.

3/51



1.1 Review of the Previous Lecture

In the previous lecture, we re-examined the diverse tasks that AI should solve from
a unified perspective.

• The tasks we want computers to solve can be formulated as an input-output
relationship.

• Real-world entities such as text, images, and audio can be converted into
numerical data (vectors or tensors).

• Thus, solving a task with AI boils down to a function determination problem:
finding an appropriate function from an input space to an output space.

3/51



1.1 Review of the Previous Lecture

In the previous lecture, we re-examined the diverse tasks that AI should solve from
a unified perspective.

• The tasks we want computers to solve can be formulated as an input-output
relationship.

• Real-world entities such as text, images, and audio can be converted into
numerical data (vectors or tensors).

• Thus, solving a task with AI boils down to a function determination problem:
finding an appropriate function from an input space to an output space.

3/51



1.2 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks.

• Formulate a function determination problem as a parameter determination
problem for a parametric function.

• Explain what parameters and functions constitute basic AI/machine learning
models such as linear regression, logistic regression, decision trees, and
k-NN.

• Formulate machine learning as determining parameters using data, and
explain the difference between training and inference.

4/51



1.2 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks.

• Formulate a function determination problem as a parameter determination
problem for a parametric function.

• Explain what parameters and functions constitute basic AI/machine learning
models such as linear regression, logistic regression, decision trees, and
k-NN.

• Formulate machine learning as determining parameters using data, and
explain the difference between training and inference.

4/51



1.2 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks.

• Formulate a function determination problem as a parameter determination
problem for a parametric function.

• Explain what parameters and functions constitute basic AI/machine learning
models such as linear regression, logistic regression, decision trees, and
k-NN.

• Formulate machine learning as determining parameters using data, and
explain the difference between training and inference.

4/51



1.3 Policy of This Lecture

The field of AI and machine learning is developing very rapidly, and specific
models widely known today are likely to be outdated by the time you graduate.

Therefore, this lecture emphasizes understanding more general and universal
concepts that will be applicable in the future and will not become obsolete, rather
than learning individual technologies.

5/51



1.3 Policy of This Lecture

The field of AI and machine learning is developing very rapidly, and specific
models widely known today are likely to be outdated by the time you graduate.

Therefore, this lecture emphasizes understanding more general and universal
concepts that will be applicable in the future and will not become obsolete, rather
than learning individual technologies.

5/51



1.3 Policy of This Lecture

As a first step, we will learn about "parametric functions," a mathematical
framework common to many machine learning models, including neural networks.

Understanding this concept will allow you to:

• View various models from a unified perspective.

• Clearly distinguish between the two major phases of AI development:
training and inference.

This distinction is an essential foundation for understanding neural network
applications and practical issues such as licensing.

6/51



1.3 Policy of This Lecture

As a first step, we will learn about "parametric functions," a mathematical
framework common to many machine learning models, including neural networks.

Understanding this concept will allow you to:

• View various models from a unified perspective.

• Clearly distinguish between the two major phases of AI development:
training and inference.

This distinction is an essential foundation for understanding neural network
applications and practical issues such as licensing.

6/51



1.3 Policy of This Lecture

As a first step, we will learn about "parametric functions," a mathematical
framework common to many machine learning models, including neural networks.

Understanding this concept will allow you to:

• View various models from a unified perspective.

• Clearly distinguish between the two major phases of AI development:
training and inference.

This distinction is an essential foundation for understanding neural network
applications and practical issues such as licensing.

6/51



Preparation: Mathematical
Notations



2. Preparation: Mathematical Notations

Here is a list of the basic mathematical notations used in this lecture.

• Definition:
• (LHS) := (RHS): The left-hand side is defined by the right-hand side.

• Set: Denoted by uppercase calligraphic letters (e.g., A).
• x ∈ A: element x belongs to set A.
• {a, b, c}: The set consisting of elements a, b, c.
• {x ∈ A|P (x)}: The set of elements in A for which P (x) is true.
• R (reals), Z (integers), with subscripts like >0 (positive) or ≥0 (non-negative).

7/51



2. Preparation: Mathematical Notations

Here is a list of the basic mathematical notations used in this lecture.

• Definition:
• (LHS) := (RHS): The left-hand side is defined by the right-hand side.

• Set: Denoted by uppercase calligraphic letters (e.g., A).
• x ∈ A: element x belongs to set A.
• {a, b, c}: The set consisting of elements a, b, c.
• {x ∈ A|P (x)}: The set of elements in A for which P (x) is true.
• R (reals), Z (integers), with subscripts like >0 (positive) or ≥0 (non-negative).

7/51



2. Preparation: Mathematical Notations

• Function:
• f : X → Y : f is a map from set X to set Y .
• y = f(x): The output of f for input x ∈ X is y ∈ Y .

• Vector: Denoted by bold italic lowercase letters (e.g., v).
• A vector is a column of numbers.
• v ∈ Rn: an n-dimensional real vector.
• The i-th element is vi. v =

[
v1 v2 · · · vn

]⊤
.

8/51



2. Preparation: Mathematical Notations

• Function:
• f : X → Y : f is a map from set X to set Y .
• y = f(x): The output of f for input x ∈ X is y ∈ Y .

• Vector: Denoted by bold italic lowercase letters (e.g., v).
• A vector is a column of numbers.
• v ∈ Rn: an n-dimensional real vector.
• The i-th element is vi. v =

[
v1 v2 · · · vn

]⊤
.

8/51



2. Preparation: Mathematical Notations

• Matrix: Denoted by bold italic uppercase letters (e.g., A).
• A ∈ Rm,n: an m× n real matrix.
• The element in the i-th row, j-th column is ai,j .
• Transpose is denoted as A⊤, where (A⊤)ij = aji.

• Tensor:
• In this lecture, a tensor is simply a multi-dimensional array.
• Vector = 1st-order tensor, Matrix = 2nd-order tensor.
• Higher-order tensors are denoted by A.

9/51



2. Preparation: Mathematical Notations

• Matrix: Denoted by bold italic uppercase letters (e.g., A).
• A ∈ Rm,n: an m× n real matrix.
• The element in the i-th row, j-th column is ai,j .
• Transpose is denoted as A⊤, where (A⊤)ij = aji.

• Tensor:
• In this lecture, a tensor is simply a multi-dimensional array.
• Vector = 1st-order tensor, Matrix = 2nd-order tensor.
• Higher-order tensors are denoted by A.

9/51



Parametric Functions



3. Parametric Functions

We have seen that solving a task can be formulated as a function determination
problem.

Since we handle functions on a computer, the function must be specified by
numerical data (e.g., a sequence of floating-point numbers).

Let’s formalize this idea.
Definition (Parametric Function)
If there exists a set Θ (the parameter space), and for each element θ ∈ Θ, a
function fθ : X → Y is defined, then the family of functions (fθ)θ∈Θ is called a
parametric function. Each θ is called a parameter.

10/51



3. Parametric Functions

We have seen that solving a task can be formulated as a function determination
problem.

Since we handle functions on a computer, the function must be specified by
numerical data (e.g., a sequence of floating-point numbers).

Let’s formalize this idea.
Definition (Parametric Function)
If there exists a set Θ (the parameter space), and for each element θ ∈ Θ, a
function fθ : X → Y is defined, then the family of functions (fθ)θ∈Θ is called a
parametric function. Each θ is called a parameter.

10/51



3. Parametric Functions

We have seen that solving a task can be formulated as a function determination
problem.

Since we handle functions on a computer, the function must be specified by
numerical data (e.g., a sequence of floating-point numbers).

Let’s formalize this idea.
Definition (Parametric Function)
If there exists a set Θ (the parameter space), and for each element θ ∈ Θ, a
function fθ : X → Y is defined, then the family of functions (fθ)θ∈Θ is called a
parametric function. Each θ is called a parameter.

10/51



3. Parametric Functions

Given a parametric function, finding a function f is replaced by finding an
appropriate parameter θ.

Why look at models other than neural networks?

• Linear/Logistic Regression: Simple, foundational, and a special case of
neural networks.

• Decision Trees: A different kind of function not representable by typical NNs.
Parameters are not a fixed-size vector. Intuitive and powerful.

• k-Nearest Neighbors (k-NN): Another non-NN example. Also has
variable-size parameters. Extremely simple training algorithm, which is great
for illustrating the concepts of training and inference.

11/51



3. Parametric Functions

Given a parametric function, finding a function f is replaced by finding an
appropriate parameter θ.

Why look at models other than neural networks?

• Linear/Logistic Regression: Simple, foundational, and a special case of
neural networks.

• Decision Trees: A different kind of function not representable by typical NNs.
Parameters are not a fixed-size vector. Intuitive and powerful.

• k-Nearest Neighbors (k-NN): Another non-NN example. Also has
variable-size parameters. Extremely simple training algorithm, which is great
for illustrating the concepts of training and inference.

11/51



3.1 Example 1: Linear Regression

Considers mapping a din-dimensional vector x ∈ Rdin to a 1-dimensional real
number y ∈ R.

• Parameters: θ := (w, b), where w ∈ Rdin is a weight vector and b ∈ R is a
bias.

• Function: fw,b(x) := w⊤x+ b =
∑din

i=1wixi + b.

Example

For din = 2, parameters w =

[
1.0

−2.0

]
, b = 0.5, and input x =

[
3.0

4.0

]
, the output is:

y = f(w,b)(x) = (1.0× 3.0) + (−2.0× 4.0) + 0.5

= 3.0− 8.0 + 0.5 = −4.5

12/51



3.1 Example 1: Linear Regression

Considers mapping a din-dimensional vector x ∈ Rdin to a 1-dimensional real
number y ∈ R.

• Parameters: θ := (w, b), where w ∈ Rdin is a weight vector and b ∈ R is a
bias.

• Function: fw,b(x) := w⊤x+ b =
∑din

i=1wixi + b.

Example

For din = 2, parameters w =

[
1.0

−2.0

]
, b = 0.5, and input x =

[
3.0

4.0

]
, the output is:

y = f(w,b)(x) = (1.0× 3.0) + (−2.0× 4.0) + 0.5

= 3.0− 8.0 + 0.5 = −4.5

12/51



3.1 Example 1: Linear Regression

Considers mapping a din-dimensional vector x ∈ Rdin to a 1-dimensional real
number y ∈ R.

• Parameters: θ := (w, b), where w ∈ Rdin is a weight vector and b ∈ R is a
bias.

• Function: fw,b(x) := w⊤x+ b =
∑din

i=1wixi + b.

Example

For din = 2, parameters w =

[
1.0

−2.0

]
, b = 0.5, and input x =

[
3.0

4.0

]
, the output is:

y = f(w,b)(x) = (1.0× 3.0) + (−2.0× 4.0) + 0.5

= 3.0− 8.0 + 0.5 = −4.5

12/51



3.1 Example 1: Linear Regression

Considers mapping a din-dimensional vector x ∈ Rdin to a 1-dimensional real
number y ∈ R.

• Parameters: θ := (w, b), where w ∈ Rdin is a weight vector and b ∈ R is a
bias.

• Function: fw,b(x) := w⊤x+ b =
∑din

i=1wixi + b.

Example

For din = 2, parameters w =

[
1.0

−2.0

]
, b = 0.5, and input x =

[
3.0

4.0

]
, the output is:

y = f(w,b)(x) = (1.0× 3.0) + (−2.0× 4.0) + 0.5

= 3.0− 8.0 + 0.5 = −4.5

12/51



3.1 Example 1: Linear Regression

Exercise

For parameters w =

[
−0.5

3.0

]
, b = −1.0, calculate the output for the same input as

in the previous example, x =

[
3.0

4.0

]
.

Answer:

y = f(w,b)(x) = (−0.5× 3.0) + (3.0× 4.0) + (−1.0)

= −1.5 + 12.0− 1.0 = 9.5

(This shows that the output changes with different parameters for the same
input.)

13/51



3.1 Example 1: Linear Regression

Exercise

For parameters w =

[
−0.5

3.0

]
, b = −1.0, calculate the output for the same input as

in the previous example, x =

[
3.0

4.0

]
.

Answer:

y = f(w,b)(x) = (−0.5× 3.0) + (3.0× 4.0) + (−1.0)

= −1.5 + 12.0− 1.0 = 9.5

(This shows that the output changes with different parameters for the same
input.) 13/51



3.2 Example 2: Logistic Regression

The input is x ∈ Rdin , but the output is a probability value y ∈ [0, 1].

• Parameters: Same as linear regression, θ := (w, b).

• Function: fw,b(x) := σ(w⊤x+ b).

• Here, σ(z) := 1
1+e−z is the sigmoid function.

14/51



3.2 Example 2: Logistic Regression

The input is x ∈ Rdin , but the output is a probability value y ∈ [0, 1].

• Parameters: Same as linear regression, θ := (w, b).

• Function: fw,b(x) := σ(w⊤x+ b).

• Here, σ(z) := 1
1+e−z is the sigmoid function.

14/51



3.2 Example 2: Logistic Regression

The input is x ∈ Rdin , but the output is a probability value y ∈ [0, 1].

• Parameters: Same as linear regression, θ := (w, b).

• Function: fw,b(x) := σ(w⊤x+ b).

• Here, σ(z) := 1
1+e−z is the sigmoid function.

14/51



3.2 Example 2: Logistic Regression

The input is x ∈ Rdin , but the output is a probability value y ∈ [0, 1].

• Parameters: Same as linear regression, θ := (w, b).

• Function: fw,b(x) := σ(w⊤x+ b).

• Here, σ(z) := 1
1+e−z is the sigmoid function.

14/51



3.2 Example 2: Logistic Regression

Example
Using the same parameters and input as the first linear regression example

(w =

[
1.0

−2.0

]
, b = 0.5,x =

[
3.0

4.0

]
), we first calculate the linear part

z = w⊤x+ b = −4.5.

The final output is:

y = σ(−4.5) =
1

1 + e4.5

≈ 1

1 + 90.017
≈ 0.011

15/51



3.2 Example 2: Logistic Regression

Exercise

For the same input x =

[
3.0

4.0

]
, calculate the output using the parameters from

the linear regression exercise, w =

[
−0.5

3.0

]
, b = −1.0.

Answer: First, the linear part is z = w⊤x+ b = 9.5. The final output is:

y = σ(9.5) =
1

1 + e−9.5

≈ 1

1 + 0.0000748
≈ 0.999925

16/51



3.2 Example 2: Logistic Regression

Exercise

For the same input x =

[
3.0

4.0

]
, calculate the output using the parameters from

the linear regression exercise, w =

[
−0.5

3.0

]
, b = −1.0.

Answer: First, the linear part is z = w⊤x+ b = 9.5. The final output is:

y = σ(9.5) =
1

1 + e−9.5

≈ 1

1 + 0.0000748
≈ 0.999925

16/51



3.3 Example 3: Decision Tree / Regression Tree

Decision trees are examples where parameters are not a fixed-length vector. For
an input x ∈ Rdin , the output is determined by traversing a tree structure.

Mathematical Formulation:

• A binary tree structure with nodes indexed by integers.
• Parameters θ define:

• The set of nodes in the tree (V).
• For each internal node: which input feature to check (ji) and a threshold (ti).
• For each leaf node: the output value (cl).

• Function fθ(x):
• Start at the root node.
• At each internal node, compare xji with ti to decide whether to go left or right.
• When a leaf node is reached, return its value cl.

17/51



3.3 Example 3: Decision Tree / Regression Tree

Decision trees are examples where parameters are not a fixed-length vector. For
an input x ∈ Rdin , the output is determined by traversing a tree structure.

Mathematical Formulation:

• A binary tree structure with nodes indexed by integers.
• Parameters θ define:

• The set of nodes in the tree (V).
• For each internal node: which input feature to check (ji) and a threshold (ti).
• For each leaf node: the output value (cl).

• Function fθ(x):
• Start at the root node.
• At each internal node, compare xji with ti to decide whether to go left or right.
• When a leaf node is reached, return its value cl.

17/51



3.3 Example 3: Regression Tree

Example (Regression Tree)
Let din = 2. Consider a tree defined by parameters θ1:

• Internal nodes:
• Node 1: split on x1 < 2.5

• Node 3: split on x2 < 0.0

• Leaf nodes:
• Node 2: value = 10.0

• Node 6: value = −5.0

• Node 7: value = 8.0

#1

x1 < 2.5

#2

10.0
#3

x2 < 0.0

#6

-5.0
#7

8.0

Figure 1: Parameters θ1

Calculate the output for input x =

[
3.0

−1.0

]
. 18/51



3.3 Example 3: Regression Tree

Input: x =

[
3.0

−1.0

]
Step 1: Evaluate at root node 1.

• The rule is: x1 < 2.5.

• Our input has x1 = 3.0.

• Since 3.0 ≥ 2.5, the condition is false.

• We proceed to the right child, node 3.

#1

x1 < 2.5

#2

10.0
#3

x2 < 0.0

#6

-5.0
#7

8.0

19/51



3.3 Example 3: Regression Tree

Input: x =

[
3.0

−1.0

]
Step 2: Evaluate at node 3.

• The rule is: x2 < 0.0.

• Our input has x2 = −1.0.

• Since −1.0 < 0.0, the condition is true.

• We proceed to the left child, node 6.

#1

x1 < 2.5

#2

10.0
#3

x2 < 0.0

#6

-5.0
#7

8.0

20/51



3.3 Example 3: Regression Tree

Input: x =

[
3.0

−1.0

]
Step 3: Arrive at leaf node 6.

• Node 6 is a leaf node.

• The value associated with this leaf is
c6 = −5.0.

• This is our final output.

Therefore, the output is y = fθ1(x) = −5.0.

#1

x1 < 2.5

#2

10.0
#3

x2 < 0.0

#6

-5.0
#7

8.0

21/51



3.3 Example 3: Regression Tree

Exercise
Consider a different tree defined by parameters θ2. Calculate the output for the

same input x =

[
3.0

−1.0

]
.

• Internal nodes:
• Node 1: x2 < 5.0

• Node 2: x1 < 1.0

• Leaf nodes:
• Node 3: 20.0
• Node 4: 1.5
• Node 5: 3.0

#1

x2 < 5.0

#2

x1 < 1.0

#4

1.5
#5

3.0

#3

20.0

Figure 2: Parameters θ2 22/51



3.3 Example 3: Regression Tree

Answer:

1. At node 1 (root): x2 = −1.0 < 5.0 (true) → go left to node 2.

2. At node 2: x1 = 3.0 ≥ 1.0 (false) → go right to node 5.

3. Node 5 is a leaf node. Its value is c5 = 3.0.

Therefore, the output is y = fθ2(x) = 3.0.

23/51



3.4 Example 4: k-Nearest Neighbors (k-NN)

k-NN is another model where the parameters are of variable length.

Mathematical Formulation:

• Parameters: The training dataset itself, θ := D = ((x1, y1), . . . , (xN , yN )), and
the number of neighbors, k.

• Function: For a new input xnew:
1. Calculate the distance from xnew to every xi in the dataset.
2. Find the k data points (xi, yi) with the smallest distances.
3. Aggregate their outputs yi to get the final result. (e.g., mean for regression,

majority vote for classification).

24/51



3.4 Example 4: k-Nearest Neighbors (k-NN)

k-NN is another model where the parameters are of variable length.

Mathematical Formulation:

• Parameters: The training dataset itself, θ := D = ((x1, y1), . . . , (xN , yN )), and
the number of neighbors, k.

• Function: For a new input xnew:
1. Calculate the distance from xnew to every xi in the dataset.
2. Find the k data points (xi, yi) with the smallest distances.
3. Aggregate their outputs yi to get the final result. (e.g., mean for regression,

majority vote for classification).

24/51



3.4 Example 4: k-Nearest Neighbors (k-NN)

k-NN is another model where the parameters are of variable length.

Mathematical Formulation:

• Parameters: The training dataset itself, θ := D = ((x1, y1), . . . , (xN , yN )), and
the number of neighbors, k.

• Function: For a new input xnew:
1. Calculate the distance from xnew to every xi in the dataset.
2. Find the k data points (xi, yi) with the smallest distances.
3. Aggregate their outputs yi to get the final result. (e.g., mean for regression,

majority vote for classification).

24/51



3.4 Example 4: k-NN Regression

Example (Regression)
Let k = 3. The parameters θ1 are the dataset D1:

D1 =

(([
0

0

]
, 5

)
,

([
1

2

]
, 10

)
,

([
3

0

]
, 20

)
,

([
4

3

]
, 25

))

Calculate the output for a new input xnew =

[
2

1

]
.

25/51



3.4 Example 4: k-NN Regression

Input: xnew =

[
2

1

]
. Data: D1.

Step 1: Calculate squared Euclidean distance to each data point.

• d(xnew,x1)
2 = (2− 0)2 + (1− 0)2 = 4 + 1 = 5

• d(xnew,x2)
2 = (2− 1)2 + (1− 2)2 = 1 + 1 = 2

• d(xnew,x3)
2 = (2− 3)2 + (1− 0)2 = 1 + 1 = 2

• d(xnew,x4)
2 = (2− 4)2 + (1− 3)2 = 4 + 4 = 8

26/51



3.4 Example 4: k-NN Regression

Step 2: Find the top k = 3 nearest neighbors.

• The distances are: 5, 2, 2, 8.

• The smallest three distances correspond to data points x2 (dist 2), x3 (dist 2),
and x1 (dist 5).

• Their corresponding outputs are y2 = 10, y3 = 20, y1 = 5.

Step 3: Aggregate the outputs (mean for regression).

• We calculate the average of the neighbors’ output values.

y =
10 + 20 + 5

3
=

35

3
≈ 11.67

The final output is y ≈ 11.67.

27/51



3.4 Example 4: k-NN Regression

Step 2: Find the top k = 3 nearest neighbors.

• The distances are: 5, 2, 2, 8.

• The smallest three distances correspond to data points x2 (dist 2), x3 (dist 2),
and x1 (dist 5).

• Their corresponding outputs are y2 = 10, y3 = 20, y1 = 5.

Step 3: Aggregate the outputs (mean for regression).

• We calculate the average of the neighbors’ output values.

y =
10 + 20 + 5

3
=

35

3
≈ 11.67

The final output is y ≈ 11.67.

27/51



3.4 Example 4: k-NN Regression

Exercise
Let k = 2 and assume the parameters θ2 consist of the following five data points.

D2 = ((

[
1

1

]
, 1), (

[
2

3

]
, 4), (

[
−1

2

]
, 6), (

[
0

−1

]
, 8), (

[
4

0

]
, 12))

Calculate the output for the same new input as in the previous example,

xnew =

[
2

1

]
.

28/51



3.4 Example 4: k-NN Regression

Answer:

• Squared distances are: 1, 4, 10, 8, 5.

• The two nearest neighbors are (

[
1

1

]
, 1) and (

[
2

3

]
, 4).

• Their outputs are {1, 4}.

• The mean is y = 1+4
2 = 2.5.

29/51



3.4 Example 4: k-NN Regression

Remark
Models like k-NN, which store the training data itself or have a non-fixed number
of parameters, are often called non-parametric models.

This is historical terminology and slightly conflicts with this lecture’s definition of a
"parametric function."

In this lecture, we consider non-parametric models as a type of "parametric
function with a variable-length data structure as parameters."

30/51



3.4 Example 4: k-NN Regression

Remark
Models like k-NN, which store the training data itself or have a non-fixed number
of parameters, are often called non-parametric models.

This is historical terminology and slightly conflicts with this lecture’s definition of a
"parametric function."

In this lecture, we consider non-parametric models as a type of "parametric
function with a variable-length data structure as parameters."

30/51



3.4 Example 4: k-NN Regression

Remark
Models like k-NN, which store the training data itself or have a non-fixed number
of parameters, are often called non-parametric models.

This is historical terminology and slightly conflicts with this lecture’s definition of a
"parametric function."

In this lecture, we consider non-parametric models as a type of "parametric
function with a variable-length data structure as parameters."

30/51



Scheme of Training and Inference



4. Scheme of Training and Inference

Viewing models as parametric functions, (fθ)θ∈Θ, separates the problem-solving
process into two distinct phases.

• Training: The process of finding the "optimal" parameters θ∗ ∈ Θ that can
best solve the task, using given training data D. This is often called fitting.

θ∗ = A((fθ),D)

• Inference: The process of fixing the parameters θ∗ and using the specific
function fθ∗ to calculate the output y for a new, unknown input x. This is also
called prediction.

y = fθ∗(x)

31/51



4. Scheme of Training and Inference

Viewing models as parametric functions, (fθ)θ∈Θ, separates the problem-solving
process into two distinct phases.

• Training: The process of finding the "optimal" parameters θ∗ ∈ Θ that can
best solve the task, using given training data D. This is often called fitting.

θ∗ = A((fθ),D)

• Inference: The process of fixing the parameters θ∗ and using the specific
function fθ∗ to calculate the output y for a new, unknown input x. This is also
called prediction.

y = fθ∗(x)

31/51



4. Scheme of Training and Inference

Training Data D Learning Algorithm A
Optimal Pa-
rameters θ∗

Parametric
Function f(·)

Training

New Input x
Function defined
by Optimal Pa-
rameters fθ∗

Predicted Output y

Inference

Figure 3: Scheme of training and inference using a parametric function.

32/51



4. Scheme of Training and Inference

Remark (Why Emphasize the Difference Between Training and Inference?)
The distinction is essential for understanding practical issues when using neural
network models, such as publication and licensing.

• For practical neural networks, the parameters for inference (θ∗) are often
public, while the training algorithm (A) and data (D) are not.

• The license for the inference part and the training part may not be the same.

• Handling neural network models without understanding their licenses carries
legal risks.

33/51



4. Scheme of Training and Inference

Remark (Why Emphasize the Difference Between Training and Inference?)
The distinction is essential for understanding practical issues when using neural
network models, such as publication and licensing.

• For practical neural networks, the parameters for inference (θ∗) are often
public, while the training algorithm (A) and data (D) are not.

• The license for the inference part and the training part may not be the same.

• Handling neural network models without understanding their licenses carries
legal risks.

33/51



4. Scheme of Training and Inference

Remark (Why Emphasize the Difference Between Training and Inference?)
The distinction is essential for understanding practical issues when using neural
network models, such as publication and licensing.

• For practical neural networks, the parameters for inference (θ∗) are often
public, while the training algorithm (A) and data (D) are not.

• The license for the inference part and the training part may not be the same.

• Handling neural network models without understanding their licenses carries
legal risks.

33/51



4. Scheme of Training and Inference

Remark (Why Emphasize the Difference Between Training and Inference?)
The distinction is essential for understanding practical issues when using neural
network models, such as publication and licensing.

• For practical neural networks, the parameters for inference (θ∗) are often
public, while the training algorithm (A) and data (D) are not.

• The license for the inference part and the training part may not be the same.

• Handling neural network models without understanding their licenses carries
legal risks.

33/51



Specific Examples of Learning
Algorithms



5. Specific Examples of Learning Algorithms

Inference is simply the computation y = fθ∗(x). All the calculation examples we
have seen so far correspond to this inference phase.

The training phase, finding the "optimal" parameters θ∗ from data D, differs greatly
depending on the type of parametric function.

The goal here is not to memorize algorithms, but to understand that training is the
process of determining parameters, and it’s different from inference.

34/51



5. Specific Examples of Learning Algorithms

Inference is simply the computation y = fθ∗(x). All the calculation examples we
have seen so far correspond to this inference phase.

The training phase, finding the "optimal" parameters θ∗ from data D, differs greatly
depending on the type of parametric function.

The goal here is not to memorize algorithms, but to understand that training is the
process of determining parameters, and it’s different from inference.

34/51



5. Specific Examples of Learning Algorithms

Inference is simply the computation y = fθ∗(x). All the calculation examples we
have seen so far correspond to this inference phase.

The training phase, finding the "optimal" parameters θ∗ from data D, differs greatly
depending on the type of parametric function.

The goal here is not to memorize algorithms, but to understand that training is the
process of determining parameters, and it’s different from inference.

34/51



5.1 Example 1: Training of k-NN

The learning algorithm for k-NN is one of the simplest imaginable.

The learning algorithm A simply stores the given training data
D = ((x1, y1), . . . , (xN , yN )) as the parameters θ.

Training is completed just by "memorizing the data."

Models like this, where most of the computation is deferred until inference time,
are sometimes called lazy learning models.

35/51



5.1 Example 1: Training of k-NN

The learning algorithm for k-NN is one of the simplest imaginable.

The learning algorithm A simply stores the given training data
D = ((x1, y1), . . . , (xN , yN )) as the parameters θ.

Training is completed just by "memorizing the data."

Models like this, where most of the computation is deferred until inference time,
are sometimes called lazy learning models.

35/51



5.1 Example 1: Training of k-NN

The learning algorithm for k-NN is one of the simplest imaginable.

The learning algorithm A simply stores the given training data
D = ((x1, y1), . . . , (xN , yN )) as the parameters θ.

Training is completed just by "memorizing the data."

Models like this, where most of the computation is deferred until inference time,
are sometimes called lazy learning models.

35/51



5.1 Example 1: Training of k-NN

The learning algorithm for k-NN is one of the simplest imaginable.

The learning algorithm A simply stores the given training data
D = ((x1, y1), . . . , (xN , yN )) as the parameters θ.

Training is completed just by "memorizing the data."

Models like this, where most of the computation is deferred until inference time,
are sometimes called lazy learning models.

35/51



5.2 Example 2: Training of Linear Regression

For models with fixed-length numerical parameters like linear regression, training
is a more active process.

Training is often formulated as an optimization problem: "minimizing a function
that measures the ’badness’ of the model’s predictions on the training data."

Definition (Loss Function)
A function L(θ) that takes parameters θ and outputs a non-negative real value
representing how "bad" the model is for the data is called a cost function, loss
function, or objective function. The goal is to find:

θ∗ := argmin
θ∈Θ

L(θ)

36/51



5.2 Example 2: Training of Linear Regression

For models with fixed-length numerical parameters like linear regression, training
is a more active process.

Training is often formulated as an optimization problem: "minimizing a function
that measures the ’badness’ of the model’s predictions on the training data."

Definition (Loss Function)
A function L(θ) that takes parameters θ and outputs a non-negative real value
representing how "bad" the model is for the data is called a cost function, loss
function, or objective function. The goal is to find:

θ∗ := argmin
θ∈Θ

L(θ)

36/51



5.2 Example 2: Training of Linear Regression

For models with fixed-length numerical parameters like linear regression, training
is a more active process.

Training is often formulated as an optimization problem: "minimizing a function
that measures the ’badness’ of the model’s predictions on the training data."

Definition (Loss Function)
A function L(θ) that takes parameters θ and outputs a non-negative real value
representing how "bad" the model is for the data is called a cost function, loss
function, or objective function. The goal is to find:

θ∗ := argmin
θ∈Θ

L(θ)

36/51



5.2.1 Least Squares Method

For linear regression, a widely used loss function is the Sum of Squared
Residuals (SSR).

The method of minimizing this loss is called the least squares method.

Definition (Sum of Squared Residuals)

Given training data D = ((xi, yi))
N
i=1, the SSR is the sum of the squares of the

differences (the residuals) between the actual outputs yi and the model’s
predicted values f(xi).

LSSR(w, b) :=

N∑
i=1

(yi − f(w,b)(xi))
2

=
N∑
i=1

(yi − (w⊤xi + b))2

37/51



5.2.1 Least Squares Method

For linear regression, a widely used loss function is the Sum of Squared
Residuals (SSR).

The method of minimizing this loss is called the least squares method.

Definition (Sum of Squared Residuals)

Given training data D = ((xi, yi))
N
i=1, the SSR is the sum of the squares of the

differences (the residuals) between the actual outputs yi and the model’s
predicted values f(xi).

LSSR(w, b) :=

N∑
i=1

(yi − f(w,b)(xi))
2

=
N∑
i=1

(yi − (w⊤xi + b))2

37/51



5.2.1 Least Squares Method

For linear regression, a widely used loss function is the Sum of Squared
Residuals (SSR).

The method of minimizing this loss is called the least squares method.

Definition (Sum of Squared Residuals)

Given training data D = ((xi, yi))
N
i=1, the SSR is the sum of the squares of the

differences (the residuals) between the actual outputs yi and the model’s
predicted values f(xi).

LSSR(w, b) :=

N∑
i=1

(yi − f(w,b)(xi))
2

=

N∑
i=1

(yi − (w⊤xi + b))2

37/51



5.2.2 Least Squares Solution

The least squares solution can be found analytically using linear algebra.

Step 1: Augment vectors and matrices.

• Append a 1 to each input vector: x̃i :=

[
xi

1

]
.

• Combine weights and bias: w̃ :=

[
w

b

]
.

• Now, the prediction is a simple dot product: f(xi) = w̃⊤x̃i.

38/51



5.2.2 Least Squares Solution

The least squares solution can be found analytically using linear algebra.

Step 1: Augment vectors and matrices.

• Append a 1 to each input vector: x̃i :=

[
xi

1

]
.

• Combine weights and bias: w̃ :=

[
w

b

]
.

• Now, the prediction is a simple dot product: f(xi) = w̃⊤x̃i.

38/51



5.2.2 Least Squares Solution

Step 2: Represent data in matrix form.

• Design Matrix X: Each row is an augmented input vector x̃⊤
i .

• Target Vector y: A column vector of all true outputs yi.

X :=


x̃⊤
1
...

x̃⊤
N

 , y :=


y1
...
yN



39/51



5.2.2 Least Squares Solution

With the matrix formulation, the vector of all predictions ŷ is simply ŷ = Xw̃.

The loss function SSR becomes the squared L2-norm of the difference vector:

LSSR(w̃) = ∥y − ŷ∥22 = ∥y −Xw̃∥22

The minimizer of this loss function is the solution to the following equation:

Definition (Normal Equation)

The following equation for w̃ is called the normal equation.

(X⊤X)w̃ = X⊤y. (1)

40/51



5.2.2 Least Squares Solution

With the matrix formulation, the vector of all predictions ŷ is simply ŷ = Xw̃.

The loss function SSR becomes the squared L2-norm of the difference vector:

LSSR(w̃) = ∥y − ŷ∥22 = ∥y −Xw̃∥22

The minimizer of this loss function is the solution to the following equation:

Definition (Normal Equation)

The following equation for w̃ is called the normal equation.

(X⊤X)w̃ = X⊤y. (1)

40/51



5.2.2 Least Squares Solution

With the matrix formulation, the vector of all predictions ŷ is simply ŷ = Xw̃.

The loss function SSR becomes the squared L2-norm of the difference vector:

LSSR(w̃) = ∥y − ŷ∥22 = ∥y −Xw̃∥22

The minimizer of this loss function is the solution to the following equation:

Definition (Normal Equation)

The following equation for w̃ is called the normal equation.

(X⊤X)w̃ = X⊤y. (1)

40/51



5.2.2 Least Squares Solution

Theorem (Least Squares Solution)
A vector w̃ minimizes the Sum of Squared Residuals (SSR) if and only if it is a
solution to the normal equation.

In particular, if the matrix X⊤X is invertible, the normal equation has a unique
solution given by:

w̃∗ = (X⊤X)−1X⊤y. (2)

Geometric Interpretation: The least squares method finds the orthogonal
projection of the target vector y onto the subspace spanned by the columns of
the design matrix X. The normal equation expresses the condition that the error
vector (y −Xw̃) must be orthogonal to that subspace.

41/51



5.2.2 Least Squares Solution

Theorem (Least Squares Solution)
A vector w̃ minimizes the Sum of Squared Residuals (SSR) if and only if it is a
solution to the normal equation.

In particular, if the matrix X⊤X is invertible, the normal equation has a unique
solution given by:

w̃∗ = (X⊤X)−1X⊤y. (2)

Geometric Interpretation: The least squares method finds the orthogonal
projection of the target vector y onto the subspace spanned by the columns of
the design matrix X. The normal equation expresses the condition that the error
vector (y −Xw̃) must be orthogonal to that subspace.

41/51



5.2.2 Least Squares Solution

Theorem (Least Squares Solution)
A vector w̃ minimizes the Sum of Squared Residuals (SSR) if and only if it is a
solution to the normal equation.

In particular, if the matrix X⊤X is invertible, the normal equation has a unique
solution given by:

w̃∗ = (X⊤X)−1X⊤y. (2)

Geometric Interpretation: The least squares method finds the orthogonal
projection of the target vector y onto the subspace spanned by the columns of
the design matrix X. The normal equation expresses the condition that the error
vector (y −Xw̃) must be orthogonal to that subspace.

41/51



5.2.2 Least Squares Solution

Example
Let’s find the optimal parameters for the following training data DA:

DA = ((x1, y1) = (

[
3

4

]
,−4.5), (x2, y2) = (

[
1

0

]
, 1.5), (x3, y3) = (

[
0

1

]
,−1.5))

42/51



5.2.2 Least Squares Solution

Step 1: Construct the design matrix X and target vector y.

• The input vectors are

[
3

4

]
,

[
1

0

]
,

[
0

1

]
.

• The augmented input vectors (add a 1) are

34
1

 ,

10
1

 ,

01
1

.

• The outputs are −4.5, 1.5,−1.5.

X =

3 4 1

1 0 1

0 1 1

 , y =

−4.5

1.5

−1.5



43/51



5.2.2 Least Squares Solution

Step 1: Construct the design matrix X and target vector y.

• The input vectors are

[
3

4

]
,

[
1

0

]
,

[
0

1

]
.

• The augmented input vectors (add a 1) are

34
1

 ,

10
1

 ,

01
1

.

• The outputs are −4.5, 1.5,−1.5.

X =

3 4 1

1 0 1

0 1 1

 , y =

−4.5

1.5

−1.5


43/51



5.2.2 Least Squares Solution

Step 2: Calculate X⊤X and X⊤y.

X⊤X =

3 1 0

4 0 1

1 1 1


3 4 1

1 0 1

0 1 1


=

10 12 4

12 17 5

4 5 3



44/51



5.2.2 Least Squares Solution

Step 2: Calculate X⊤X and X⊤y. (Continued)

X⊤y =

3 1 0

4 0 1

1 1 1


−4.5

1.5

−1.5


=

 −13.5 + 1.5

−18.0− 1.5

−4.5 + 1.5− 1.5

 =

−12.0

−19.5

−4.5



45/51



5.2.2 Least Squares Solution

Step 3: Solve the normal equation (X⊤X)w̃ = X⊤y.10 12 4

12 17 5

4 5 3


w1

w2

b

 =

−12.0

−19.5

−4.5



Solving this system of linear equations (e.g., by finding the inverse of the matrix on
the left), we get the solution:

w̃∗ =

w1

w2

b

 =

 1.0

−2.0

0.5


These are exactly the parameters we used in the first inference example!

46/51



5.2.2 Least Squares Solution

Step 3: Solve the normal equation (X⊤X)w̃ = X⊤y.10 12 4

12 17 5

4 5 3


w1

w2

b

 =

−12.0

−19.5

−4.5


Solving this system of linear equations (e.g., by finding the inverse of the matrix on
the left), we get the solution:

w̃∗ =

w1

w2

b

 =

 1.0

−2.0

0.5


These are exactly the parameters we used in the first inference example!

46/51



5.3 Diversity of Learning Algorithms and Neural Networks

As we have seen, learning algorithms can be completely different:

• k-NN: Just store the data ("lazy learning").
• Linear Regression: Solve a system of linear equations (the normal

equation).
• Decision Trees: Use a greedy algorithm to find the best splits (not detailed

here).

In contrast, one of the greatest strengths of neural networks is the uniformity of
their learning algorithm.

Most neural networks can be trained under a common framework:

1. Calculate the gradient of the loss function using backpropagation.
2. Minimize the loss using stochastic gradient descent (SGD) or its variants.

47/51



5.3 Diversity of Learning Algorithms and Neural Networks

As we have seen, learning algorithms can be completely different:

• k-NN: Just store the data ("lazy learning").
• Linear Regression: Solve a system of linear equations (the normal

equation).
• Decision Trees: Use a greedy algorithm to find the best splits (not detailed

here).

In contrast, one of the greatest strengths of neural networks is the uniformity of
their learning algorithm.

Most neural networks can be trained under a common framework:

1. Calculate the gradient of the loss function using backpropagation.
2. Minimize the loss using stochastic gradient descent (SGD) or its variants.

47/51



5.3 Diversity of Learning Algorithms and Neural Networks

As we have seen, learning algorithms can be completely different:

• k-NN: Just store the data ("lazy learning").
• Linear Regression: Solve a system of linear equations (the normal

equation).
• Decision Trees: Use a greedy algorithm to find the best splits (not detailed

here).

In contrast, one of the greatest strengths of neural networks is the uniformity of
their learning algorithm.

Most neural networks can be trained under a common framework:

1. Calculate the gradient of the loss function using backpropagation.
2. Minimize the loss using stochastic gradient descent (SGD) or its variants.

47/51



Summary and Future Outlook



6.1 Today’s Summary

• A task can be reduced to a parameter determination problem for a
parametric function.

• Various AI models like linear regression, decision trees, and k-NN can be
understood uniformly as parametric functions.

• Machine learning is separated into a training phase (finding optimal
parameters from data) and an inference phase (using those parameters to
make predictions).

48/51



6.1 Today’s Summary

• A task can be reduced to a parameter determination problem for a
parametric function.

• Various AI models like linear regression, decision trees, and k-NN can be
understood uniformly as parametric functions.

• Machine learning is separated into a training phase (finding optimal
parameters from data) and an inference phase (using those parameters to
make predictions).

48/51



6.1 Today’s Summary

• A task can be reduced to a parameter determination problem for a
parametric function.

• Various AI models like linear regression, decision trees, and k-NN can be
understood uniformly as parametric functions.

• Machine learning is separated into a training phase (finding optimal
parameters from data) and an inference phase (using those parameters to
make predictions).

48/51



6.2 Next Time

This time, we viewed various machine learning models within the unified
framework of parametric functions. This is an important foundation for
understanding neural networks.

Next time, we will strictly define what a neural network is̶a particularly
expressive type of parametric function. We will use the mathematical tool of a
Directed Acyclic Graph (DAG) to do this.

Then, we will learn about the distinction between "architecture" and "checkpoints,"
concepts that are extremely important in the practical application of modern AI.

49/51



6.2 Next Time

This time, we viewed various machine learning models within the unified
framework of parametric functions. This is an important foundation for
understanding neural networks.

Next time, we will strictly define what a neural network is̶a particularly
expressive type of parametric function. We will use the mathematical tool of a
Directed Acyclic Graph (DAG) to do this.

Then, we will learn about the distinction between "architecture" and "checkpoints,"
concepts that are extremely important in the practical application of modern AI.

49/51



6.2 Next Time

This time, we viewed various machine learning models within the unified
framework of parametric functions. This is an important foundation for
understanding neural networks.

Next time, we will strictly define what a neural network is̶a particularly
expressive type of parametric function. We will use the mathematical tool of a
Directed Acyclic Graph (DAG) to do this.

Then, we will learn about the distinction between "architecture" and "checkpoints,"
concepts that are extremely important in the practical application of modern AI.

49/51



Appendix: Differentiation by a Vector i

The gradient of a scalar function f(x) with respect to a vector x is defined as a
vector of partial derivatives.

∇xf(x) =
∂f(x)

∂x
:=
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]⊤
1. Derivative of a Linear Term:

∂(a⊤x)

∂x
= a

2. Derivative of a Quadratic Form: For a symmetric matrix A:

∂(x⊤Ax)

∂x
= 2Ax (if A = A⊤)



Appendix: Differentiation by a Vector ii

Recall the loss function:

L(w̃) = y⊤y − 2w̃⊤X⊤y + w̃⊤(X⊤X)w̃

Differentiating each term w.r.t. w̃:

• 1st term (y⊤y): Constant, derivative is 0.

• 2nd term (−2w̃⊤(X⊤y)): Linear term, derivative is −2X⊤y.

• 3rd term (w̃⊤(X⊤X)w̃): Quadratic form with a symmetric matrix (X⊤X),
derivative is 2(X⊤X)w̃.

Summing them up gives the gradient:

∇w̃L = −2X⊤y + 2X⊤Xw̃


	Introduction
	Preparation: Mathematical Notations
	Parametric Functions
	Scheme of Training and Inference
	Specific Examples of Learning Algorithms
	Summary and Future Outlook
	Appendix

