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Introduction



1.1 Review of the Previous Lecture

In the last lecture, we saw that many machine learning models, including neural
networks, can be understood within a unified framework.

• Many machine learning models can be formulated as a parametric function
{fθ}, where the specific computation is determined by the values of
parameters θ.

• The process of solving a task is divided into two phases.
• Training: Using data to find the parameter θ∗ that best solves the task.
• Inference: Using the trained parameter θ∗ to provide a new input to the function
fθ∗ and obtain an output.
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1.2 Learning Outcomes of This Lecture

Through this lecture, students will aim to be able to perform the following tasks:

• Describe in mathematical terms the function represented by a neural network
defined by a general Directed Acyclic Graph (DAG).

• State the definitions of frequently used terms in modern neural network
applications, such as architecture, checkpoint, and model.

• Explain why the distinction between architecture and checkpoint is important
for utilizing AI in real-world applications.
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1.3 Policy of This Lecture

Although many students may have already studied neural networks, this lecture
will deliberately start from their mathematical definition. The goal is to define
neural networks in the most general form possible.

The field of AI and machine learning is developing very rapidly, and the specific
models widely known today may well be outdated by the time you graduate.

Therefore, this lecture emphasizes understanding more general and universal
concepts that will be applicable in the future and will not become obsolete.
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1.3 Policy of This Lecture

One might ask, "Is a fundamental understanding of neural networks necessary if
we are to use them as black boxes?" The answer to this question is "Yes."

In particular, the distinction between architecture and checkpoint that we will
learn in this lecture is extremely important for using AI in the real world.

Without understanding this distinction, you will not be able to correctly understand
the issue of AI licenses, which we will cover in the next lecture. Using AI without
regard for its license can lead to legal risks such as copyright infringement.
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Preparation: Mathematical
Notations



2. Preparation: Mathematical Notations

Here is a review of the basic mathematical notations used in this lecture.

• Definition:
• (LHS) := (RHS): The left-hand side is defined by the right-hand side.

• Set: Denoted by uppercase calligraphic letters (e.g., A).
• x ∈ A: element x belongs to set A.
• {}: The empty set.
• {a, b, c}: The set consisting of elements a, b, c.
• {x ∈ A|P (x)}: The set of elements in A for which P (x) is true.
• R (reals), Z (integers), with subscripts like >0 (positive) or ≥0 (non-negative).
• [1, k]Z := {1, 2, . . . , k}.
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2. Preparation: Mathematical Notations

• Function:
• f : X → Y : f is a map from set X to set Y .
• y = f(x): The output of f for input x ∈ X is y ∈ Y .

• Vector: A column of numbers, denoted by bold italic lowercase letters (e.g.,
v ∈ Rn). The i-th element is vi.

v =


v1

v2
...
vn

 , v⊤ =
[
v1 v2 · · · vn

]

• Matrix: Denoted by bold italic uppercase letters (e.g., A ∈ Rm,n). The
element in the i-th row, j-th column is ai,j .

• Tensor: In this lecture, simply a multi-dimensional array.
• Vector = 1st-order tensor, Matrix = 2nd-order tensor.
• Higher-order tensors are denoted by A.
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What is a Neural Network?



3. What is a Neural Network?

An Artificial Neural Network (ANN) is a type of parametric function.

Remark (On Terminology)
"Neural network" originally refers to biological neural circuitry. Engineering
models are "artificial neural networks." However, in modern AI, the two are best
understood as independent concepts. In this lecture, "neural network" will mean
an artificial one.

Remark (Scope of this Lecture)
All networks in this lecture are feedforward neural networks (e.g., MLP, CNN,
Transformer). We will not cover non-feedforward networks like Boltzmann
machines.

In a nutshell, a feedforward neural network is a parametric function defined by a
directed acyclic graph (DAG) where each node has a fixed function, and
many edges are associated with parameters (real values).
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Directed Acyclic Graph (DAG)



4. Directed Acyclic Graph (DAG)

To define a neural network’s structure, we start with its backbone, a directed
graph.

Definition (Directed Multigraph)
A directed multigraph G is a tuple G = (V, E ,Tail,Head), consisting of:

• a set of nodes or vertices V,

• a set of edges or directed arcs E ,

• and two maps, Tail : E → V and Head : E → V , which assign a tail and head
node to each edge.
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4. Directed Acyclic Graph (DAG)

We can define relationships between nodes:

• Incoming edges of a node v: E(v)
in = {e ∈ E | Head(e) = v}.

• Outgoing edges of a node v: E(v)
out = {e ∈ E | Tail(e) = v}.

• A parent node of v is the tail of an incoming edge.
• A child node of v is the head of an outgoing edge.

v1

v2

v3

v4

Figure 1: Example of a directed graph. Here, v1 is a parent of v2, and v4 is a child of v3.
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4. Directed Acyclic Graph (DAG)

Definition (Path and Cycle)
In a directed multigraph G:

• A path is a sequence of nodes and edges, where each edge connects a node
to the next one in the sequence.

• A cycle is a path that starts and ends at the same node.

Definition (Directed Acyclic Graph)
When a directed multigraph G has no cycles, it is called a Directed Acyclic
Graph (DAG).

Intuitively, a DAG allows only "one-way" flows. This means the nodes can be
topologically sorted.
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4. Directed Acyclic Graph (DAG)

v1

v2

v3

v4

Figure 2: Example of a DAG (including
multi-edges)

v1

v2

v3

Figure 3: Example that is not a DAG (a cycle
v1 → v2 → v3 → v1 exists)
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4. Directed Acyclic Graph (DAG)

In a DAG, there is always at least one node with no incoming edges.

These nodes become the input nodes that receive the input when the neural
network is viewed as a function.

v1

v2

v3

v4

v5

v6

Figure 4: Example of a DAG. Nodes v1, v2 (green) are the input nodes.
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The Function Represented by a
Neural Network



5. The Function Represented by a Neural Network

A neural network is a collection of simple computational units (nodes and edges)
connected in a DAG structure. The entire network represents a massive
composite function.

• Nodes: Receive values from parent nodes or network inputs, apply a fixed
activation function, and compute a new value.

• Edges: Receive a value from their tail node, multiply it by a parameter value
(a weight), and pass it to their head node.
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5. The Function Represented by a Neural Network

First, we define the parameter-independent part, the architecture.

Definition (Neural Network Architecture)
A neural network architecture is rigorously defined by a tuple including:

1. Computation Graph: A DAG G = (V, E ,Tail,Head), where nodes are
topologically sorted integers.

2. Input/Output Dimensions: The overall network’s input dimension dinput and
output dimension doutput.

3. Node Specifications: For each node v ∈ V :
• An activation function g(v) : Rd(v)

arg → Rd
(v)
ret .

• An argument source tuple NodeSrc(v), specifying where each argument for g(v)

comes from (either a network input or an incoming edge).
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5. The Function Represented by a Neural Network

Definition (Neural Network Architecture (cont.))

4. Edge Specifications: For each edge e ∈ E , an edge source index
EdgeSrc(e) indicating which component of its tail node’s return vector to use.

5. Parameter Specifications:
• The total number of parameters dparam.
• A weight map Weight : E → [1, dparam]Z that assigns a parameter to each edge

(allowing for parameter sharing).
• Sets of trainable (variable) and non-trainable (fixed) parameters.

6. Output Specifications: An output source map OutSrc specifying which
component of which node’s return vector corresponds to each component of
the overall network output.
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5. The Function Represented by a Neural Network

Definition (The Function Represented by a Neural Network)

Given an architecture and specific parameter values (a checkpoint) θ ∈ Rdparam ,
the function fθ : Rdinput → Rdoutput is computed as follows for an input x:

1. Per-Node Computation: In topological order (v ∈ V):
1.1 Construct the argument vector a(v) for node v’s activation function g(v). Each

argument is taken from either a network input xj or a weighted value from a
parent node, θp × r

(u)
k .

1.2 Compute the return value vector for node v: r(v) := g(v)(a(v)).

2. Overall Network Output: After all nodes are computed, construct the output
vector y by picking the specified return values from the nodes.
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5. The Function Represented by a Neural Network

Remark (On Generality)
This definition is very general.

• It can represent common operations like the weighted sum in MLPs by
defining the activation function appropriately (e.g., g(v)(a) = ReLU(

∑
i ai)).

• It can also represent complex layers like convolutions in CNNs and attention
in Transformers.

• With mild constraints on the activation functions (e.g., local Lipschitz
continuity), the parameters for this entire general class of functions can be
trained using a unified method (backpropagation + gradient descent).

This means we don’t need a separate training theory for each new architecture.

19/51



5.1 Specific Computation Examples

Let’s look at a few examples to see how this formal definition can represent
various functions.

The key takeaways from this section are:

• Simple models like linear and logistic regression are just special cases of
neural networks. A neural network is a broad concept that includes these.

• The architecture of a neural network can be very flexible and irregular. The
design freedom is immense, opening the door for future innovations.
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5.1 Specific Computation Examples

#3

ReLU ◦
∑

#1

x1

#2

x2

θ1×

θ2×

Figure 5: Legend for DAG representation of a neural network.

• Nodes: Circles are computational units. Blue for input, red for output. Inside
is the node number and activation function.

• Activation Function Shorthand: A function name like ‘ReLU‘ on a node with
multiple inputs is shorthand for "sum the inputs, then apply the function" (e.g.,
ReLU ◦

∑
).

• Edges: Arrows show data flow. A label like θ1× means multiply by parameter
θ1.
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5.1 Example: Linear Regression

Consider the linear regression model f(x) = w1x1 + w2x2 + b. This can be
represented by the following architecture.

#4∑

#1

x1

#2

x2

#3

1

w1
×

w2×

b×

Figure 6: DAG representation of a linear regression
model

Architecture:

• Nodes: 1, 2, 3 for inputs
(x1, x2, and a constant 1 for
the bias).

• Node 4: Output node.
Activation function is
summation (

∑
).

• Edges: Weights are
parameters w1, w2, b.
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5.1 Example: Linear Regression

Let’s execute the computation.

• Checkpoint: θ = [w1, w2, b]
⊤ = [1.0,−2.0, 0.5]⊤.

• Input: x = [x1, x2]
⊤ = [3.0, 4.0]⊤.

1. Nodes 1, 2, 3: These are input nodes.
• Return value of node 1: r(1) = [x1] = [3.0].
• Return value of node 2: r(2) = [x2] = [4.0].
• Return value of node 3: r(3) = [1.0] (constant bias input).
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5.1 Example: Linear Regression

2. Node 4: This node sums its arguments. First, we compute the arguments.
• Arg 1 (from node 1): a(4)1 = w1 × r

(1)
1 = 1.0× 3.0 = 3.0.

• Arg 2 (from node 2): a(4)2 = w2 × r
(2)
1 = −2.0× 4.0 = −8.0.

• Arg 3 (from node 3): a(4)3 = b× r
(3)
1 = 0.5× 1.0 = 0.5.

The return value of node 4 is the sum of these arguments:

r(4) = g(4)(3.0,−8.0, 0.5) = [3.0− 8.0 + 0.5] = [−4.5]

Final Output: The network’s output is taken from node 4, so y = [−4.5].
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5.1 Example: Linear Regression

Exercise

For parameters w =

[
−0.5

3.0

]
, b = −1.0, find the output for the same input

x =

[
3.0

4.0

]
.

Solution:
• The arguments to node 4 are:

• a
(4)
1 = −0.5× 3.0 = −1.5.

• a
(4)
2 = 3.0× 4.0 = 12.0.

• a
(4)
3 = −1.0× 1.0 = −1.0.

• The sum is r(4) = [−1.5 + 12.0− 1.0] = [9.5].

• Final Output: y = [9.5].
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1 = −0.5× 3.0 = −1.5.

• a
(4)
2 = 3.0× 4.0 = 12.0.

• a
(4)
3 = −1.0× 1.0 = −1.0.

• The sum is r(4) = [−1.5 + 12.0− 1.0] = [9.5].

• Final Output: y = [9.5]. 25/51



5.1 Example: Logistic Regression

Consider the logistic regression model f(x) = σ(w1x1 + w2x2 + b), where σ is the
sigmoid function.

#4

σ ◦
∑

#1

x1

#2

x2

#3

1

w1
×

w2×

b×

Figure 7: DAG representation of a logistic regression
model

Architecture: Almost the same
as linear regression. The only
change is the activation function
of node 4.

• Node 4 Activation:
g(4)(a) = σ(

∑
i ai).
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5.1 Example: Logistic Regression

Let’s execute the computation.

• Checkpoint: θ = [1.0,−2.0, 0.5]⊤.
• Input: x = [3.0, 4.0]⊤.

The computation of the arguments for node 4 is identical to the linear regression
case.

a(4) = [3.0,−8.0, 0.5]⊤

The sum is 3.0− 8.0 + 0.5 = −4.5.

The return value of node 4 applies the sigmoid function:

r(4) = g(4)(a(4)) = [σ(−4.5)]

σ(−4.5) =
1

1 + e4.5
≈ 1

1 + 90.017
≈ 0.01098

Final Output: y ≈ [0.01098].
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5.1 Example: Logistic Regression

Exercise

For parameters w =

[
−0.5

3.0

]
, b = −1.0, find the output of the logistic regression

model for the input x =

[
3.0

4.0

]
.

Solution:

• The sum of arguments for node 4 is 9.5 (from the linear regression exercise).

• The return value is r(4) = [σ(9.5)].

• σ(9.5) = 1
1+e−9.5 ≈ 1

1+0.0000748 ≈ 0.999925.

• Final Output: y ≈ [0.999925].
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5.1 Example: Multilayer Perceptron (MLP)

Consider an MLP with a 2D input, a 2D hidden layer (with ReLU), and a 1D output.

#6∑

#4

ReLU ◦
∑

#5

ReLU ◦
∑

#1

x1

#2

x2

#3

1

Figure 8: DAG of an MLP. Note the intermediate nodes #4 and #5.

h1 = ReLU(w1,1x1 + w1,2x2 + b1)

h2 = ReLU(w2,1x1 + w2,2x2 + b2)

y = v1h1 + v2h2 + c
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5.1 Example: Multilayer Perceptron (MLP)

Let’s execute the computation.

• Checkpoint:
θ = [w11, w12, w21, w22, b1, b2, v1, v2, c]

⊤ = [1, 1,−1,−1, 0, 1, 2, 3,−1]⊤.

• Input: x = [3.0, 4.0]⊤.

1. Nodes 1, 2, 3: Return input values [3.0], [4.0], [1.0] respectively.
2. Node 4 (Hidden 1):

• Sum of arguments: (1× 3.0) + (1× 4.0) + (0× 1.0) = 7.0.
• Return value: r(4) = [ReLU(7.0)] = [7.0].
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5.1 Example: Multilayer Perceptron (MLP)

3. Node 5 (Hidden 2):
• Sum of arguments: (−1× 3.0)+ (−1× 4.0)+ (1× 1.0) = −3.0− 4.0+ 1.0 = −6.0.
• Return value: r(5) = [ReLU(−6.0)] = [0.0].

4. Node 6 (Output):
• Arguments come from nodes 4, 5, and the bias node 3.
• Sum of arguments:
(v1 × r

(4)
1 ) + (v2 × r

(5)
1 ) + (c× r

(3)
1 ) = (2× 7.0) + (3× 0.0) + (−1× 1.0).

• = 14.0 + 0.0− 1.0 = 13.0.
• Return value: r(6) = [13.0].

Final Output: y = [13.0].
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5.1 Example: Multilayer Perceptron (MLP)

Remark (Vector Notation for MLP)
The MLP’s computation can be expressed concisely using vectors and matrices.
Let the input be x, hidden weights be W , hidden bias be b, output weights be v,
and output bias be c.

y = c+ v⊤ReLU (b+Wx) (1)

Here, ReLU applied to a vector means it’s applied to each element
(element-wise application).

32/51



5.1 Example: Multilayer Perceptron (MLP)

Exercise

In the MLP example, find the output for the input x =

[
3.0

4.0

]
with parameters

θ =



0.5

−0.5

0.5

−0.5

1

−1

−2

1

0.5


.

Solution:

• Node 4 (Hidden 1): Sum is (0.5× 3) + (−0.5× 4) + (1× 1) = 0.5.
r(4) = [ReLU(0.5)] = [0.5].

• Node 5 (Hidden 2): Sum is (0.5× 3) + (−0.5× 4) + (−1× 1) = −1.5.
r(5) = [ReLU(−1.5)] = [0.0].

• Node 6 (Output): Sum is (−2× 0.5) + (1× 0.0) + (0.5× 1) = −0.5.
r(6) = [−0.5].

Final Output: y = [−0.5].

33/51



5.1 Example: Multilayer Perceptron (MLP)

Exercise

In the MLP example, find the output for the input x =

[
3.0

4.0

]
with parameters

θ =



0.5

−0.5

0.5

−0.5

1

−1

−2

1

0.5


.

Solution:

• Node 4 (Hidden 1): Sum is (0.5× 3) + (−0.5× 4) + (1× 1) = 0.5.
r(4) = [ReLU(0.5)] = [0.5].

• Node 5 (Hidden 2): Sum is (0.5× 3) + (−0.5× 4) + (−1× 1) = −1.5.
r(5) = [ReLU(−1.5)] = [0.0].

• Node 6 (Output): Sum is (−2× 0.5) + (1× 0.0) + (0.5× 1) = −0.5.
r(6) = [−0.5].

Final Output: y = [−0.5].

33/51



5.1 Example: 1D Convolution

As an example of parameter sharing, let’s consider a 1D convolutional layer with
a kernel of size 2, k = [k1, k2]

⊤.

y1 = k1x1 + k2x2

y2 = k1x2 + k2x3

y3 = k1x3 + k2x4

The same parameters k1, k2 are reused.

#5∑

#6∑

#7∑

#1

x1

#2

x2

#3

x3

#4

x4

k1×

k2×

k1×

k2×

k1×

k2×

Figure 9: DAG of a 1D convolution. Edges of the same color share the same parameter.
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5.1 Example: 1D Convolution

Let’s execute the computation.

• Checkpoint: θ = [k1, k2]
⊤ = [0.5,−1.0]⊤.

• Input: x = [2.0,−1.0, 3.0, 0.0]⊤.

1. Nodes 1-4: Return input values [2.0], [−1.0], [3.0], [0.0].
2. Node 5 (Output 1):

• Arguments: (θ1 × r
(1)
1 ), (θ2 × r

(2)
1 ) = (0.5× 2.0), (−1.0×−1.0).

• Sum: 1.0 + 1.0 = 2.0. Return value: r(5) = [2.0].

3. Node 6 (Output 2):
• Arguments: (θ1 × r

(2)
1 ), (θ2 × r

(3)
1 ) = (0.5×−1.0), (−1.0× 3.0).

• Sum: −0.5− 3.0 = −3.5. Return value: r(6) = [−3.5].
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5.1 Example: 1D Convolution

4. Node 7 (Output 3):
• Arguments: (θ1 × r

(3)
1 ), (θ2 × r

(4)
1 ) = (0.5× 3.0), (−1.0× 0.0).

• Sum: 1.5 + 0.0 = 1.5. Return value: r(7) = [1.5].

5. Network Output: The output is the concatenation of the return values from
nodes 5, 6, and 7.

y =

r
(5)
1

r
(6)
1

r
(7)
1

 =

 2.0

−3.5

1.5


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5.1 Example: 1D Convolution

Remark (Definition of Convolution)
The convolution operation, denoted by ‘*‘, is more generally defined by
considering padding (adding zeros to the input ends) and stride (the step size
when sliding the kernel).

The output size dout depends on the input size din, kernel size dk, padding p, and
stride s:

dout = ⌊din + 2p− dk
s

⌋+ 1

Our example was a case of p = 0 (no padding) and s = 1 (stride 1).
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5.1 Example: 1D Convolution

Exercise

In the 1D convolution example, find the output for the input x =


2.0

−1.0

3.0

0.0

 with

parameters θ = [k1, k2]
⊤ =

[
1.5

1.0

]
.

Solution:

• Output 1 (Node 5): (1.5× 2.0) + (1.0×−1.0) = 3.0− 1.0 = 2.0.

• Output 2 (Node 6): (1.5×−1.0) + (1.0× 3.0) = −1.5 + 3.0 = 1.5.

• Output 3 (Node 7): (1.5× 3.0) + (1.0× 0.0) = 4.5 + 0.0 = 4.5.

Final Output: y = [2.0, 1.5, 4.5]⊤.
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5.1 Example: A Complex Network

Our framework allows for irregular structures, multi-dimensional outputs from
nodes, and multiple edges between nodes.

#6

id

#7

id

#8

Softmax

#5∑

#3

ReLU ◦
∑

#4

ReLU ◦
∑

#1

x1

#2

x2

Figure 10: Example of a network with a complex structure

Node 8 has a multi-dimensional output: g(8)(a) = Softmax
([

a1+a3
a2+a4

])
∈ R2.
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5.1 Example: A Complex Network

Input: x = [1.0,−2.0]⊤. Weights are given.

1. Nodes 1, 2: r(1) = [1.0], r(2) = [−2.0].

2. Node 3: (θ(1,3) = 1, θ(2,3) = 1)
• Sum of args: (1× 1.0) + (1×−2.0) = −1.0.
• Return value: r(3) = [ReLU(−1.0)] = [0.0].

3. Node 4: (θ(1,4) = 1, θ(2,4) = −1)
• Sum of args: (1× 1.0) + (−1×−2.0) = 3.0.
• Return value: r(4) = [ReLU(3.0)] = [3.0].
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5.1 Example: A Complex Network

4. Node 5: (θ(3,5) = 0.5, θ(4,5) = −0.5)

• Sum of args: (0.5× r
(3)
1 ) + (−0.5× r

(4)
1 ) = (0.5× 0.0) + (−0.5× 3.0) = −1.5.

• Return value: r(5) = [−1.5].

5. Node 6: (θ(3,6) = 1)

• Argument: (1× r
(3)
1 ) = 0.0. Return value: r(6) = [0.0].

6. Node 7: (θ(5,7) = 2)

• Argument: (2× r
(5)
1 ) = −3.0. Return value: r(7) = [−3.0].
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5.1 Example: A Complex Network

8. Node 8: This node has 4 arguments coming from nodes 4 and 5.
• a

(8)
1 = θ(4,8),1r

(4)
1 = 1× 3.0 = 3.0

• a
(8)
2 = θ(4,8),2r

(4)
1 = −1× 3.0 = −3.0

• a
(8)
3 = θ(5,8),1r

(5)
1 = 1×−1.5 = −1.5

• a
(8)
4 = θ(5,8),2r

(5)
1 = 1×−1.5 = −1.5

The activation function computes Softmax
([

a1+a3
a2+a4

])
.

z =

[
3.0− 1.5

−3.0− 1.5

]
=

[
1.5

−4.5

]

r(8) = Softmax(z) =
1

e1.5 + e−4.5

[
e1.5

e−4.5

]
≈

[
0.9975

0.0025

]
Final Output: Concatenating outputs from nodes 6, 7, and 8 gives
y ≈ [0.0,−3.0, 0.9975, 0.0025]⊤.
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5.1 Example: A Complex Network

Exercise

For the same complex architecture and input x =

[
1.0

−2.0

]
, calculate the output

with a different set of parameters (provided in the lecture notes).

Solution:

• Node 3 output r(3) = [ReLU(1.5)] = [1.5].

• Node 4 output r(4) = [ReLU(1.0)] = [1.0].

• Node 5 output r(5) = [1.5 + 1.0] = [2.5].

• Node 6 output r(6) = [−2× 1.5] = [−3.0].

• Node 7 output r(7) = [1× 2.5] = [2.5].

• Node 8 input vector z =
[
(0.5×1.0)+(−1×2.5)
(0.5×1.0)+(1×2.5)

]
=

[−2.0
3.0

]
.

• Node 8 output r(8) = Softmax(
[−2.0

3.0

]
) ≈ [0.0067, 0.9933]⊤.

Final Output: y ≈ [−3.0, 2.5, 0.0067, 0.9933]⊤.
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Architecture and Checkpoints



6. Architecture and Checkpoints

Let’s summarize the key components of a neural network based on our
discussion.

1. A human first designs the computational blueprint: the DAG, activation
functions, and parameter assignments.

2. Then, a learning process (training) finds the specific numerical values for the
parameters suitable for the task.

Definition (Architecture and Checkpoint)

• Architecture: The design information of a neural network, i.e., everything
other than the specific values of the parameters. (This is what we formally
defined earlier).

• Checkpoint: A set of specific parameter values (a list of numbers) that
have been learned for a specific architecture.
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6. Architecture and Checkpoints

Remark (The Ambiguity of the Word "Model")
The term "model of a neural network" can be ambiguous, so caution is required.

• In theoretical contexts or research papers, "model" often refers only to the
architecture. (e.g., "The Transformer model").

• In applied contexts or software libraries, "model" often refers to the pair of an
architecture and a checkpoint. (e.g., "a pre-trained model").

45/51



6. Architecture and Checkpoints

Remark (The Ambiguity of the Word "Model")
The term "model of a neural network" can be ambiguous, so caution is required.

• In theoretical contexts or research papers, "model" often refers only to the
architecture. (e.g., "The Transformer model").

• In applied contexts or software libraries, "model" often refers to the pair of an
architecture and a checkpoint. (e.g., "a pre-trained model").

45/51



6. Architecture and Checkpoints

This distinction maps directly to the training and inference scheme.

Training Data D Training Algorithm A Checkpoint θ∗

Architecture f(·)

Training

New Input x
Trained Model

fθ∗ (Architecture
+ Checkpoint)

Predicted Output y

Inference

Figure 11: Training and inference in terms of architecture and checkpoint.
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Summary and Future Outlook



7.1 Today’s Summary

• A neural network is a type of parametric function whose specific
computation is determined by the values of its parameters.

• Its computational structure is rigorously defined by a Directed Acyclic Graph
(DAG).

• The specification of a neural network is clearly separated into two
components: the architecture (the "blueprint") and the checkpoint (the
specific parameter values).

• A specific, computable "trained model" is completed only when an
architecture and a checkpoint are combined.
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7.2 Preview of the Next Lecture

This time, we have seen that a neural network is a parametric function composed
of two elements: the architecture and the checkpoint. With an understanding of
this distinction, you are ready to use neural networks as black boxes.

Next time, we will discuss the inescapable issue of licenses when using publicly
available neural network models.

In fact, the distinction between architecture and checkpoint, and between "training"
and "inference," which we learned today, is critically important for understanding
the scope of license application.
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Appendix: Constraints on Activation Functions i

In theory, any function can be an activation function. In practice, we choose
functions with specific properties for two main reasons:

1. Possibility of Training: We need to use gradient methods for efficient
training. This requires the gradient (how a small parameter change affects the
output) to be well-defined.

2. Reusability of Parameters: Techniques like fine-tuning (reusing a trained
checkpoint for a new task) require stability. A small change in parameters
should only cause a small change in the output.



Appendix: Constraints on Activation Functions ii

The mathematical property that satisfies these requirements is local Lipschitz
continuity.

Definition (Local Lipschitz Continuity)
A function g : Rn → Rm is locally Lipschitz continuous if, around any point, the
rate of change of its output is bounded. Formally, for any x0, there exists a
constant K and a neighborhood such that for any x′,x′′ in that neighborhood:

∥g(x′)− g(x′′)∥ ≤ K∥x′ − x′′∥ (2)

Differentiable functions and piecewise differentiable functions like ReLU satisfy
this property. Its consequences are:



Appendix: Constraints on Activation Functions iii

• It mathematically justifies the use of gradient methods.

• It ensures the entire neural network is also locally Lipschitz continuous with
respect to its parameters θ, enabling stable training and fine-tuning.
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