Al Applications Lecture 4
Licenses and Openness

SUZUKI, Atsushi
Jing WANG

2025-09-01

Contents

d0__Introduction

2 Degrees of Openness with Examples
2.1 From Completely Closed io AimostOpen

at voes pen ean:
p.1 _Visualizing the Relationship with a block Diagram.

4 _Specitic Examples of Release Stages
A.1 _Ul/APl-only Release (Hosted)
4.2 Architecture + CheckpointReleasd
4.3 Release of Iraining Code and Recipes

o _License Basics (For source Code)

p.o lheDangerotNoLicensg oo

b Model-Specific Licenses (Open-Weight Type)
b.1 CreativeML Open RAIL-M and its Derivatives

£~ W w ww

(@)

00 N NO OO o 01 01 O»

(o]

I _Creative Commons

p_Case Study: Separation of Rights Holders

9 Model Versions and I'icense Differences Across Versions
B.1 Number of Parameters (Billion Parameters)
0.2 Numerical Representation: Floaiing-Point Numbers and Quantization
§.2.1 Precise Definition of Floating-FPoint Numbers (IEEE 794)
B.2.2 Comparison of fp16 and bf16: Dynamic Range vs. Precision lrade-off
9.3 Insiruction Finefuning and "Instruct” Modelg

10 Practical Guidelines and Caveats

11 Summary

12 Next Iime

11
12

13

13

13

1 Introduction

1.1 Review of the Previous Lecture

In the last lecture, we defined the function represented by a neural network as generally as
possible. The key points were as follows:

» The architecture of a neural network is the design information, consisting of the struc-
ture of a Directed Acyclic Graph (DAG), the activation function for each node, and
the correspondence between edges and parameters.

» A checkpoint contains the specific parameter values obtained through training for
that architecture.

+ Only when both the architecture f(., and the checkpoint 6 are available is a specific
function f, uniquely determined. That is, for an input x, it returns an output y = fy(x).

Let’s revisit this perspective using mathematical notation. For an input space X, an output
space Y, and a parameter space ® c RP?:

Architecturef(.):®—>{X—>J/}, 0O fopr: X > V.

Training is the process of determining parameters based on past data using some algorithm,
and inference is the process of applying fy:.

1.2 Learning Outcomes

By the end of this lecture, students should be able to explain and judge the following:

» Systematically explain the various stages of releasing and licensing a neural net-
work model (e.g., UI/API release, architecture + checkpoint release, training code
release).

» Determine whether a model provided under an Open Source Software (OSS) license
can be used for their own purposes, by referencing major licenses (MIT / BSD-3 /
Apache 2.0 / GPL-3).

1.3 Disclaimer

The speaker of this lecture is not a legal expert. The content presented here is general
guidance, and for specific cases, you should consult with lawyers in your respective
country and region. The goal is to reasonably prevent legal risks, and final decisions
should be made at your own responsibility (also refer to official documents from GitHub,
etc.) [8,12,20].

2 Degrees of Openness with Examples

2.1 From Completely Closed to Almost Open

Neural networks span a spectrum from completely closed (only UI/API is shared) to almost
completely open (architecture, checkpoint, and even training code/recipes are released).
Furthermore, even if a model is "open,” whether others can freely use it is determined by its
license.

Case 1: The Staged Release of GPT-2 When OpenAl’s GPT-2 was announced in 2019,
the weights for the largest model were subject to a staged release, and for a time, it was
completely closed (the 1.5B weights were later fully released in November 2019) [24,25]. It
is worth noting that the means of use were limited at the time.

Case 2: LLMs as a Service As of August 2025, OpenAl provides ChatGPT-5 via its Chat-
GPT interface and API. However, inference is executed on their servers, and the details
of the architecture and checkpoints are generally not disclosed [26]. Users only interact
with prompts and outputs.

Case 3: ”Open” Models and Distribution Platforms Models like Llama (Meta) [17, 18],
Qwen (Alibaba) [2], Mistral (Mistral Al) [19], and DeepSeek (DeepSeek Al) [10] are widely
known as open (Open Weights/Open Model). The Hugging Face Hub serves as a plat-
form for their distribution and discovery (with licenses clearly stated in repositories), allowing
them to be downloaded and run in conjunction with various libraries [14,15].

3 What Does "Open” Mean?

Generally, when a model is called "open,” it means that at a minimum, the architecture
(configuration files or implementation) and the trained checkpoint (weights) are pub-
licly available. So, what is often not disclosed? Typically, it is the training data and the
training algorithm (including the complete training recipe and scripts for reproduc-
tion).

Remark 3.1 (Feasibility of Inference and Training). With the architecture f.) and checkpoint
0, inference is possible. However, reproducing the training (arriving at the exact same
0) is usually impossible unless the data, recipe, random seeds, etc., are identical. For this
reason, even with "open weights,” if the insights from the training process (e.g., data
curation, regularization techniques) are not disclosed, the reproducibility and potential for
adaptation are limited.

3.1 Visualizing the Relationship with a Block Diagram

Figure [uses the framework from the previous lecture (parametric functions) to color-code
the parts that tend to be open (architecture and checkpoint) and the parts that tend to
remain private (training data and training algorithm).

Training
Often Public

Architecture f(,

Often Private Often Private Often Public

Training Data © ———| Training Algorithm A —— Checkpoint 6*

Trained Model
New Input x —— | fp (Architeciure |——— Predicted Output y
+ Checkpoint)

Inference

Figure 1: Color-coding of the scope of release in open models. Blue = Often Public (Ar-
chitecture f.), Checkpoint 6%, Trained Model fy-), Red = Often Private (Training Data D,
Training Algorithm).

4 Specific Examples of Release Stages

4.1 UI/APIl-only Release (Hosted)

In this model, only an inference service is provided via a chat Ul or web API, while the
weights and detailed implementation remain private (e.g., OpenAl’s generally available
models) [286].

4.2 Architecture + Checkpoint Release

Weights are distributed as Open Weights, allowing for local execution or use as a starting
point for retraining (e.g., Mistral 7B is released under Apache 2.0 [19], DeepSeek-R1 under
MIT [10]). However, the training data and complete training procedures are often not
disclosed.

4.3 Release of Training Code and Recipes

Some initiatives also release data pipelines and training scripts to improve training repro-
ducibility (e.g., Al2’s OLMo project [T]).

5 License Basics (For Source Code)

Here, we summarize four widely used OSS licenses, highlighting their practical implica-
tions and representative model examples. The final determination of "can | use this?”
must be based on the specific license text and its scope.

5.1 MIT License

This license is very permissive, with minimal conditions (copyright notice and disclaimer).
It facilitates commercial use, redistribution, and modification [?2]. However, it does not
warrant that use of the software does not infringe on the author’s patent rights, so there is a
theoretical risk of infringing the author’s patent rights.

« Conditions for users: Include the original copyright notice and permission notice in
copies or derivative works.

» Permissions for users: "Without restriction.” No fees. Commercial use is permitted.

« Warranty and Liability: The authors and copyright holders provide no warranty (in-
cluding no warranty of non-infringement of third-party rights) and assume no liability.

* Model examples: DeepSeek-v3, DeepSeek-R1 (DeepSeek Al) [10].

5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive but includes a clause prohibiting the use of
developers’ or contributors’ names for endorsement without permission [21]].

« Conditions for users: Include the original copyright notice and permission notice in
copies or derivative works. Do not use the names of copyright holders or contributors
for promotional purposes without permission.

» Permissions for users: Redistribution and "use” (effectively unrestricted). No fees.
Commercial use is permitted.

« Warranty and Liability: The authors and copyright holders provide no warranty and
assume no liability.

* Model/Library example: The classic machine learning library scikit-learn is under
BSD-3 [27]. (Whether it includes pre-trained models depends on the specific distribu-
tion.)

5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License, with the added benefit for
users of an explicit grant of patent licenses. This means that even if the author holds
patents, you can use them without a fee (however, this does not protect the user if a third
party holds a patent) [4].

» Conditions for users: Include the original copyright notice and license text in copies
or derivative works.

» Permissions for users: Free of charge; specific actions are enumerated but are nearly
unrestricted. Commercial use is permitted. In addition to a copyright license, a royalty-
free patent license is also granted (subject to termination conditions related to patent
litigation).

« Warranty and Liability: The authors and copyright holders provide no warranty (in-
cluding no warranty of non-infringement of third-party rights) and assume no liability.

» Model examples: Mistral 7B was released under Apache 2.0 [19]. The Hugging Face
Transformers library (which implements many architectures) is under Apache 2.0 [13].

5.4 GPL

The GPL (GNU General Public License) is a representative license that embodies the phi-
losophy of Copyleft. Asitis less commonly used in the context of Al models and its pros and
cons are complex, we will only touch on it briefly. Copyleft is the idea that while allowing the
free use, modification, and redistribution of software, it obligates derivative works to be
under the same license (freedom). This aims to ensure that the freedom of the software
is perpetually inherited.

GPLv3 has a strong copyleft provision, requiring that if you distribute software cre-
ated using GPL code, the source code of the entire software must also be released under
GPLv3 [11]. To address the fact that using the software on a server-side does not trigger the
source code disclosure obligation, the AGPL-3 was created, which extends the definition of
“distribution” to include providing services over a network.

* Model Example: YOLOv5 uses AGPL-3.0, which means that if you provide a web
service that incorporates this model, you are obligated to release the source code of
the entire service [28].

 Practical Implications: It imposes strong restrictions on integration into services and
code mixing (which can lead to unintended requirements to disclose source code).
Careful consideration is required, especially for commercial use.

5.5 The Danger of No License

If source code or a model has no license specified, it is understood by default that all rights
are reserved, and no permission is granted for use, modification, or redistribution
[8,02]. Such materials should be avoided.

6 Model-Specific Licenses (Open-Weight Type)

Recent open-weight distributions sometimes include custom terms that are not standard
OSS licenses, such as use restrictions or monthly active users (MAU) thresholds.

» Llama series (Meta): The Community License for the Llama 3 series allows com-
mercial use with restrictions, subject to conditions on scale and application (the 700
million MAU threshold clause is well-known for Llama 2 and 3) [17,18].

* Qwen 2.5 (Alibaba): The Qianwen License for large models in the Qwen 2.5 series
(e.g., Qwen/Qwen2.5-72B-Instruct) includes custom conditions, such as a 100 mil-
lion MAU threshold [2]. However, other models in the same Qwen 2.5 series, like
Qwen/Qwen2.5-7B-Instruct, are licensed under the Apache License 2.0, allowing for
relatively free use. This shows that licenses can differ even for models from the same
company and series, so caution is needed. As far as the lecturer has investigated,
Qwen 3 and later versions are licensed under the Apache License 2.0, permitting rel-
atively free use.

6.1 CreativeML Open RAIL-M and its Derivatives

The CreativeML Open RAIL-M license is used by image generation Als like Stable Dif-
fusion [6]. RAIL stands for Responsible Al License, and as its name suggests, it aims to
promote "responsible Al use.”

This license permits the free use, modification, and distribution of the model and code, but
it is characterized by imposing explicit Use Restrictions. Specifically, it includes clauses
that prohibit use for purposes such as:

* lllegal purposes

» Generating content intended to harm or exploit others
» Spreading misinformation or disinformation

» Uses that violate individual privacy

More importantly, it requires that when distributing derivative works created under this
license, the same use restrictions must be imposed on downstream users. This obliga-
tion of "inheritance of restrictions” is analogous to the copyleft philosophy of GPL (inheritance

8

of license). However, since it does not mandate that the derivative work must have the exact
same license, it is not typically called a copyleft license.

7 Creative Commons

While CC licenses are widely used for documents, images, and data, they are generally
unsuitable for the distribution of mutable and executable software/models. Key vari-
ations include CC BY 4.0 (Attribution) [7Z], CC BY-SA 4.0 (ShareAlike) [9], CC BY-NC 4.0
(NonCommercial) [8], and others.

8 Case Study: Separation of Rights Holders

Even if an architecture implementation (e.g., Hugging Face Transformers) is under Apache
2.0, the license for each checkpoint is separate. Since rights and conditions differ for
each set of weights even within the same framework;, it is essential to check the model
card and LICENSE file [T3,15].

« Example: DeepSeek-R1 weights are MIT [10], the Mistral family is Apache 2.0 [19],
and Llama has its own custom license [2,07].

9 Model Versions and License Differences Across Versions

Companies that focus on developing large-scale models may release multiple models (check-
point + architecture) under the same series name. While it can be inferred that the training
processes to obtain these checkpoints are similar, they are mathematically distinct entities.
It is important to note that there is no guarantee that the licenses for all these models will be
the same.

Example 9.1 (Qwen 2.5 (Alibaba)). The Qianwen License for large language models in the
Qwen 2.5 series by Alibaba (e.g., Qwen/Qwen2.5-72B-Instruct) includes custom conditions
such as a 100 million MAU threshold [?]. In the same Qwen 2.5 series, however, models
like Qwen/Qwen2.5-7B-Instruct are licensed under the Apache License 2.0, allowing for
relatively free use. Qwen 3 is licensed under Apache License 2.0, also allowing for relatively
free use.

As the example above shows, licenses can differ for models from the same company and
series, so caution is needed. It is necessary to check the model card for the specific model
you wish to use.

By the way, we mentioned model names like Qwen/Qwen2.5-72B-Instruct and Qwen/Qwen2.5-
7B-Instruct, both of which are part of the Qwen2.5 series. Some students might be curious
about the differences between them. While this course aims to avoid delving into the details

of individual models, | will provide a brief explanation for interested students. When there
are multiple models within the same series, they generally differ in two main ways: either
the architecture is different, resulting in a different number of real numbers in the checkpoint
(also called the number of parameters), or the architecture is the same, but the checkpoint
is different. | will explain briefly below, but | must re-emphasize that the license should be
checked for each case.

9.1 Number of Parameters (Billion Parameters)

The scale of a model is expressed by the total number of real numbers in its checkpoint
(parameters). For example, "7B” means the checkpoint contains approximately 7 billion
(7 x 107) real numbers (B is for Billion). This is sometimes stated as the model consisting of
7 billion parameters, where each real number is called a parameter. In mathematical terms,
the parameters (checkpoint) are a real vector represented as:

0 =(01,0,...,0p) €R”.

A ”7B model” refers to the dimension D of this vector being approximately 7 billion. Gener-
ally, a higher parameter count increases the model’'s expressive power, but also increases
computational costs and memory requirements.

9.2 Numerical Representation: Floating-Point Numbers and Quantiza-
tion

Each parameter 6; is stored on a computer in a specific numerical format. This format directly
affects the model’s file size and inference speed.

» fp32 (single-precision floating-point): A standard format that uses 32 bits to repre-
sent a number. It has a wide dynamic range and high precision but consumes a large
amount of memory. A 7B model would require approximately 7 x 10° x 32 bit ~ 28 GB of
storage.

 fp16 (half-precision floating-point): Uses 16 bits for representation. It halves mem-
ory usage and computation compared to fp32, but its smaller range of representable
numbers (dynamic range) can make training unstable.

» bf16 (Bfloat16): A 16-bit format developed by Google Brain. Like fp16, it uses 16 bits,
but it allocates 8 bits to the exponent, the same as fp32, thereby maintaining a wide
dynamic range and improving training stability in deep learning [16].

* Quantization: A technique for approximating parameters with a smaller number of bits
(e.g., int8, int4). It can significantly reduce model size and accelerate inference, but
generally at the cost of a slight decrease in model accuracy.

10

9.2.1 Precise Definition of Floating-Point Numbers (IEEE 754)

The standard for handling real numbers in computers is IEEE 754. This standard represents
a floating-point number in binary using three parts: a Sign, an Exponent, and a Mantis-
sa/Fraction.

A value V is defined using a sign bit § € {0, 1}, an integer E represented by the exponent
bit string, and a fraction M represented by the mantissa bit string, as follows:

V = (=1)5 x (1.M)y x 2EPias

Here, (1.M), is the binary representation using an “implicit bit,” where an implicit ‘1° is as-
sumed before the mantissa bit string M. The exponent E is not used directly; a fixed bias is
subtracted to get the actual exponent. This allows for efficient representation of both positive
and negative exponents.

Each format (fp32, fp16, bf16) differs in the number of bits allocated to these three parts.

Table 1: Bit Allocation for Floating-Point Formats
Format Total Bits Sign Exponent Mantissa Bias

fp32 32 1 8 23 127
fp16 16 1 5 10 15
bf16 16 1 8 7 127

The differences in bit allocation create a trade-off between the representable range of
numbers (dynamic range) and precision (the granularity between adjacent humbers)
for each format.

9.2.2 Comparison of fp16 and bf16: Dynamic Range vs. Precision
Trade-off

Although both fp16 and bf16 are 16-bit formats, their characteristics differ significantly.

» fp16 has a longer mantissa of 10 bits, giving it high precision. However, its short
exponent of 5 bits results in a narrow dynamic range. When dealing with very large
or very small numbers, it is prone to overflow (exceeding the maximum representable
value) or underflow (becoming closer to zero than the minimum representable value).

* bf16 has an exponent of 8 bits, the same as fp32, giving it a very wide dynamic
range. However, its short mantissa of 7 bits means its precision is lower than fp16.

Let’s look at this difference with a concrete example.

Example 9.2 (A number representable in bf16 but not in fp16). Large number: Consider
V =100, 000.

11

» fp16: The maximum representable normalized number has an exponent of Emax = 15
and a maximum mantissa, which is (2 — 2719) x 215 ~ 1.999 x 32768 = 65504. Therefore,
100, 000 exceeds the range of fp16 and will overflow to infinity (o).

» bf16: Since it has the same exponent as fp32, it can represent numbers up to approx-
imately 3.4 x 1038, 100,000 is 1.52587890625 x 216, and the exponent 16 fits within the
exponent field as 16 + 127 = 143, so it can be represented without issue.

Small number: Consider V = 1.0 x 107°.

« fp16: The smallest positive normalized number is 2714 ~ 6.1 x 107°. Since 1.0 x 107°
is smaller than this, it will underflow to zero or become a denormalized number with
significantly reduced precision.

+ bf16: The smallest positive normalized number is 27126, which is extremely small.
1.0 x 107° can be represented with ease.

Example 9.3 (A number representable in fp16 but not in bf16). A nhumber requiring preci-
sion: Consider V = 1+ 278 = 1.00390625. In binary, this is (1.00000001)y x 2°.

« fp16: The mantissa has 10 bits. It can accurately represent the ‘1‘ in the 8th decimal
place as (1.0000000100),.

» bf16: The mantissa has only 7 bits. When trying to represent (1.00000001)2, the ‘1*in
the 8th bit position does not fit and is rounded to the nearest value (round-to-nearest-
even). In this case, it gets rounded to (1.0000000) = 1, creating an error. Thus, bf16
cannot distinguish between 1 and 1 + 278,

Thus, in deep learning, the wide dynamic range of bf16 can contribute to stability when
dealing with potentially huge gradients or parameter values, while fp16 may be advanta-
geous for tasks where precision is critical.

9.3 Instruction Finetuning and ”Instruct” Models

Suffixes like “Instruct” or “Chat” in a model’s name suggest that it has undergone additional
training to adapt to specific tasks, known as Instruction Finetuning.

A base large language model (foundation model) is trained to predict the next word from
a vast corpus of text. While it possesses general knowledge, its ability to follow a user’s
specific instructions (e.g., "Summarize..”, "Translate...”) is limited.

Therefore, additional fine-tuning is performed using a dataset of "instruction (prompt) and
desired response” pairs. This allows the model to acquire the ability to engage in conversa-
tional interactions and follow diverse instructions [29]. The details of this tuning method may

be covered in a later lecture of this course.

12

10 Practical Guidelines and Caveats

11

”’Open” does not mean free to use: The license text governs everything. Always
check the LICENSE and Terms of Service/AUP on the model page.

Apache 2.0 is a safe choice: If you want your model to be widely used but have
little commercial intent, Apache 2.0 is easy to handle due to the clarity of its patent
clauses [4].

The legal nature of checkpoints is an immature area: It is reasonable to consider
them as having aspects of both source code and data, and that no consensus has
been established [3,23]. A policy of "when in doubt, do not use” is the safest
approach.

Summary

Many "open models” release their architecture and checkpoints, but the training
data and learning algorithms are often kept private.

Even if a model is "public,” whether third parties can freely use it is determined by
its license. In practice, one must understand the nature of licenses like MIT / BSD-
3 / Apache 2.0 / GPL-3 and always check the LICENSE and model card for each
model.

12 Next Time

Next time, we will download and run a specific open large language model locally to
confirm hands-on the division of roles between the neural network part (architecture +
checkpoint) and the surrounding components (tokenizer, pre/post-processing, infer-
ence runtime).

References

[1] Al2. Olmo: An open language model. https://allenai.org/olma, 2024—2025.

[2] Alibaba Cloud. Qwen license agreement (e.g., qwen2.5-72b-instruct). https://

huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE, 2024-2025.

[3] All Things Open. The open source ai definition: Why we need it. https://

allthingsopen.org/articles/the-open-source-ai-definition-why-we-need-it,
2024.

13

https://allenai.org/olmo
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://allthingsopen.org/articles/the-open-source-ai-definition-why-we-need-it
https://allthingsopen.org/articles/the-open-source-ai-definition-why-we-need-it

[4] Apache Software Foundation. Apache license, version 2.0. http://www.apache.org/
licenses/LICENSE-2.0.

[5] Choose a License. No license. https://choosealicense.com/no-permission/.

[6] CompVis and Stability Al. Creativeml open rail-m. https://huggingface.co/spaces/

CompVis/stable-diffusion-license/raw/main/license.txt, 2022.

[7] Creative Commons. Attribution 4.0 international (cc by 4.0). https://

creativecommons.org/licenses/by/4.0/.

[8] Creative Commons. Attribution-noncommercial 4.0 international (cc by-nc 4.0). https:

//creativecommons.org/licenses/by-nc/4.0/.

[9] Creative Commons. Attribution-sharealike 4.0 international (cc by-sa 4.0). https://

creativecommons.org/licenses/by-sa/4.0/.

[10] DeepSeek-Al. deepseek-ai/deepseek-r1. https://huggingface.co/deepseek-ai/
DeepSeek-R1/blob/main/LICENSE, 2025. LICENSE: MIT.

[11] Free Software Foundation. Gnu general public license, version 3. https://www.gnu.
org/licenses/gpl-3.0.en.html.

[12] GitHub Docs. Licensing a repository. https://docs.github.com/articles/

licensing-a-repository.

[13] Hugging Face. Transformers (license: Apache-2.0). https://github.com/

huggingface/transformers.

[14] Hugging Face Docs. Downloading models. https://huggingface.co/docs/hub/en/
models-downloading, 2025.

[15] Hugging Face Docs. Licenses (hub). https://huggingface.co/docs/hub/en/

repositories-licenses, 2025.

[16] D. Kalamkar et al. Bfloat16: The secret to high performance on cloud
tpus. https://cloud.google.com/blog/products/ai-machine-learning/
bfloatl6-the-secret-to-high-performance-on-cloud-tpus, 2019.

[17] Meta. Llama community license. https://ai.meta.com/11lama/license/, 2023-2024.
[18] Meta Al. Introducing meta llama 3. https://ai.meta.com/blog/meta-1lama-3/, 2024.

[19] Mistral Al. Announcing mistral 7b. https://mistral.ai/news/
announcing-mistral-7b/, 2023.

[20] Open Source Guides. The legal side of open source. https://opensource.guide/
legal/.

14

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://choosealicense.com/no-permission/
https://huggingface.co/spaces/CompVis/stable-diffusion-license/raw/main/license.txt
https://huggingface.co/spaces/CompVis/stable-diffusion-license/raw/main/license.txt
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/LICENSE
https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/LICENSE
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://docs.github.com/articles/licensing-a-repository
https://docs.github.com/articles/licensing-a-repository
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/docs/hub/en/models-downloading
https://huggingface.co/docs/hub/en/models-downloading
https://huggingface.co/docs/hub/en/repositories-licenses
https://huggingface.co/docs/hub/en/repositories-licenses
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://ai.meta.com/llama/license/
https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://opensource.guide/legal/
https://opensource.guide/legal/

[21] Open Source Initiative. The bsd 3-clause license. https://opensource.org/license/
bsd-3-clause/.

[22] Open Source Initiative. The mit license. https://opensource.org/license/mit/.

[23] Open Source Initiative. Drafts of the open source ai definition. https://opensource.
org/ai/drafts, 2024-2025.

[24] OpenAl. Better language models and their implications. https://openai.com/index/
better-language-models/, 2019.

[25] OpenAl. Releasing gpt-2: 1.5b release. https://openai.com/index/
gpt-2-1-5b-release/, 2019.

[26] OpenAl. Models. https://platform.openai.com/docs/models, 2025.

[27] scikit-learn. License. https://github.com/scikit-learn/scikit-learn/blob/main/

COPYTNG.

[28] Ultralytics. yolov5 (license: Agpl-3.0). https://github.com/ultralytics/yolov5/
blob/master/LICENSE.

[29] Jason Wei et al. Finetuned language models are zero-shot learners. arXiv preprint

arXiv:2109.01652, 2022. ICLR 2022.

15

https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/mit/
https://opensource.org/ai/drafts
https://opensource.org/ai/drafts
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/gpt-2-1-5b-release/
https://openai.com/index/gpt-2-1-5b-release/
https://platform.openai.com/docs/models
https://github.com/scikit-learn/scikit-learn/blob/main/COPYING
https://github.com/scikit-learn/scikit-learn/blob/main/COPYING
https://github.com/ultralytics/yolov5/blob/master/LICENSE
https://github.com/ultralytics/yolov5/blob/master/LICENSE

	Introduction
	Review of the Previous Lecture
	Learning Outcomes
	Disclaimer

	Degrees of Openness with Examples
	From Completely Closed to Almost Open

	What Does "Open" Mean?
	Visualizing the Relationship with a Block Diagram

	Specific Examples of Release Stages
	UI/API-only Release (Hosted)
	Architecture + Checkpoint Release
	Release of Training Code and Recipes

	License Basics (For Source Code)
	MIT License
	BSD 3-Clause License
	Apache License 2.0
	GPL
	The Danger of No License

	Model-Specific Licenses (Open-Weight Type)
	CreativeML Open RAIL-M and its Derivatives

	Creative Commons
	Case Study: Separation of Rights Holders
	Model Versions and License Differences Across Versions
	Number of Parameters (Billion Parameters)
	Numerical Representation: Floating-Point Numbers and Quantization
	Precise Definition of Floating-Point Numbers (IEEE 754)
	Comparison of fp16 and bf16: Dynamic Range vs. Precision Trade-off

	Instruction Finetuning and "Instruct" Models

	Practical Guidelines and Caveats
	Summary
	Next Time

