
AI Applications Lecture 4

Licenses and Openness

SUZUKI, Atsushi
Jing WANG



Outline

Introduction

Degrees of Openness with Examples

What Does "Open" Mean?

Specific Examples of Release Stages

License Basics (For Source Code)

Model-Specific Licenses (Open-Weight Type)

Case Study: Separation of Rights Holders

Model Versions and License Differences Across Versions

Practical Guidelines and Caveats

Summary

Next Time

2/55



Introduction



1.1 Review of the Previous Lecture

In the last lecture, we defined the function represented by a neural network as
generally as possible.

The key points were:

• The architecture is the design information: a DAG structure, activation
functions, and the edge-parameter mapping.

• A checkpoint contains the specific parameter values obtained through
training.

• Only with both the architecture f(·) and the checkpoint θ is a specific
function fθ uniquely determined.

3/55



1.1 Review of the Previous Lecture

In the last lecture, we defined the function represented by a neural network as
generally as possible.

The key points were:

• The architecture is the design information: a DAG structure, activation
functions, and the edge-parameter mapping.

• A checkpoint contains the specific parameter values obtained through
training.

• Only with both the architecture f(·) and the checkpoint θ is a specific
function fθ uniquely determined.

3/55



1.1 Review of the Previous Lecture

In the last lecture, we defined the function represented by a neural network as
generally as possible.

The key points were:

• The architecture is the design information: a DAG structure, activation
functions, and the edge-parameter mapping.

• A checkpoint contains the specific parameter values obtained through
training.

• Only with both the architecture f(·) and the checkpoint θ is a specific
function fθ uniquely determined.

3/55



1.1 Review of the Previous Lecture

In the last lecture, we defined the function represented by a neural network as
generally as possible.

The key points were:

• The architecture is the design information: a DAG structure, activation
functions, and the edge-parameter mapping.

• A checkpoint contains the specific parameter values obtained through
training.

• Only with both the architecture f(·) and the checkpoint θ is a specific
function fθ uniquely determined.

3/55



1.1 Review of the Previous Lecture

Let’s revisit this perspective using mathematical notation.

For an input space X , an output space Y, and a parameter space Θ ⊂ RD:

Architecture f(·) : Θ → {X → Y}, θ ∈ Θ 7→ fθ : X → Y .

• Training is determining parameters θ∗ based on data.

• Inference is applying the final function fθ∗ .

4/55



1.1 Review of the Previous Lecture

Let’s revisit this perspective using mathematical notation.

For an input space X , an output space Y, and a parameter space Θ ⊂ RD:

Architecture f(·) : Θ → {X → Y}, θ ∈ Θ 7→ fθ : X → Y .

• Training is determining parameters θ∗ based on data.

• Inference is applying the final function fθ∗ .

4/55



1.1 Review of the Previous Lecture

Let’s revisit this perspective using mathematical notation.

For an input space X , an output space Y, and a parameter space Θ ⊂ RD:

Architecture f(·) : Θ → {X → Y}, θ ∈ Θ 7→ fθ : X → Y .

• Training is determining parameters θ∗ based on data.

• Inference is applying the final function fθ∗ .

4/55



1.2 Learning Outcomes

By the end of this lecture, students should be able to explain and judge the
following:

• Systematically explain the various stages of releasing and licensing a
neural network model.

• Determine whether a model provided under an Open Source Software
(OSS) license can be used for their own purposes, by referencing major
licenses.

5/55



1.2 Learning Outcomes

By the end of this lecture, students should be able to explain and judge the
following:

• Systematically explain the various stages of releasing and licensing a
neural network model.

• Determine whether a model provided under an Open Source Software
(OSS) license can be used for their own purposes, by referencing major
licenses.

5/55



1.2 Learning Outcomes

By the end of this lecture, students should be able to explain and judge the
following:

• Systematically explain the various stages of releasing and licensing a
neural network model.

• Determine whether a model provided under an Open Source Software
(OSS) license can be used for their own purposes, by referencing major
licenses.

5/55



1.3 Disclaimer

Remark (Important Disclaimer)
The speaker of this lecture is not a legal expert. The content presented here is
general guidance.

• For specific cases, you must consult with lawyers in your respective country
and region.

• The goal is to reasonably prevent legal risks.

• Final decisions should be made at your own responsibility. Refer to
official documentation [1, 2, 3].

6/55



1.3 Disclaimer

Remark (Important Disclaimer)
The speaker of this lecture is not a legal expert. The content presented here is
general guidance.

• For specific cases, you must consult with lawyers in your respective country
and region.

• The goal is to reasonably prevent legal risks.

• Final decisions should be made at your own responsibility. Refer to
official documentation [1, 2, 3].

6/55



1.3 Disclaimer

Remark (Important Disclaimer)
The speaker of this lecture is not a legal expert. The content presented here is
general guidance.

• For specific cases, you must consult with lawyers in your respective country
and region.

• The goal is to reasonably prevent legal risks.

• Final decisions should be made at your own responsibility. Refer to
official documentation [1, 2, 3].

6/55



1.3 Disclaimer

Remark (Important Disclaimer)
The speaker of this lecture is not a legal expert. The content presented here is
general guidance.

• For specific cases, you must consult with lawyers in your respective country
and region.

• The goal is to reasonably prevent legal risks.

• Final decisions should be made at your own responsibility. Refer to
official documentation [1, 2, 3].

6/55



Degrees of Openness with
Examples



2. Degrees of Openness with Examples

Neural networks span a spectrum from completely closed to almost completely
open.

• Completely Closed: Only a User Interface (UI) or Application Programming
Interface (API) is shared. You send inputs and get outputs, but see nothing
else.

• Almost Open: Architecture, checkpoints, and even the training code or
"recipes" are released.

• A model’s license determines if others can freely use it, regardless of how
"open" it is.

7/55



2. Degrees of Openness with Examples

Neural networks span a spectrum from completely closed to almost completely
open.

• Completely Closed: Only a User Interface (UI) or Application Programming
Interface (API) is shared. You send inputs and get outputs, but see nothing
else.

• Almost Open: Architecture, checkpoints, and even the training code or
"recipes" are released.

• A model’s license determines if others can freely use it, regardless of how
"open" it is.

7/55



2. Degrees of Openness with Examples

Neural networks span a spectrum from completely closed to almost completely
open.

• Completely Closed: Only a User Interface (UI) or Application Programming
Interface (API) is shared. You send inputs and get outputs, but see nothing
else.

• Almost Open: Architecture, checkpoints, and even the training code or
"recipes" are released.

• A model’s license determines if others can freely use it, regardless of how
"open" it is.

7/55



2. Degrees of Openness with Examples

Neural networks span a spectrum from completely closed to almost completely
open.

• Completely Closed: Only a User Interface (UI) or Application Programming
Interface (API) is shared. You send inputs and get outputs, but see nothing
else.

• Almost Open: Architecture, checkpoints, and even the training code or
"recipes" are released.

• A model’s license determines if others can freely use it, regardless of how
"open" it is.

7/55



2. Degrees of Openness with Examples

Example (The Staged Release of GPT-2)
When OpenAI’s GPT-2 was announced in 2019, the weights for the largest model
were subject to a staged release due to safety concerns [4].

• Initially, the most powerful 1.5B parameter model was completely closed.

• The full model was eventually released in November 2019 after a period of
study and debate [5].

8/55



2. Degrees of Openness with Examples

Example (The Staged Release of GPT-2)
When OpenAI’s GPT-2 was announced in 2019, the weights for the largest model
were subject to a staged release due to safety concerns [4].

• Initially, the most powerful 1.5B parameter model was completely closed.

• The full model was eventually released in November 2019 after a period of
study and debate [5].

8/55



2. Degrees of Openness with Examples

Example (The Staged Release of GPT-2)
When OpenAI’s GPT-2 was announced in 2019, the weights for the largest model
were subject to a staged release due to safety concerns [4].

• Initially, the most powerful 1.5B parameter model was completely closed.

• The full model was eventually released in November 2019 after a period of
study and debate [5].

8/55



2. Degrees of Openness with Examples

Example (LLMs as a Service)
As of August 2025, OpenAI provides ChatGPT-5 via its ChatGPT interface and
API.

• Inference is executed on their servers.

• The details of the architecture and checkpoints are generally not
disclosed [6].

• Users only interact with prompts and outputs.

9/55



2. Degrees of Openness with Examples

Example (LLMs as a Service)
As of August 2025, OpenAI provides ChatGPT-5 via its ChatGPT interface and
API.

• Inference is executed on their servers.

• The details of the architecture and checkpoints are generally not
disclosed [6].

• Users only interact with prompts and outputs.

9/55



2. Degrees of Openness with Examples

Example (LLMs as a Service)
As of August 2025, OpenAI provides ChatGPT-5 via its ChatGPT interface and
API.

• Inference is executed on their servers.

• The details of the architecture and checkpoints are generally not
disclosed [6].

• Users only interact with prompts and outputs.

9/55



2. Degrees of Openness with Examples

Example ("Open" Models and Distribution Platforms)
Models like Llama (Meta), Qwen (Alibaba), Mistral (Mistral AI), and DeepSeek
(DeepSeek AI) are known as open (Open Weights/Open Model).

• The Hugging Face Hub is a major platform for their distribution [7].

• You can download the architecture and checkpoints to run locally.

• Licenses are (usually) clearly stated in the model repositories.
[8, 9, 10, 11, 12]

10/55



2. Degrees of Openness with Examples

Example ("Open" Models and Distribution Platforms)
Models like Llama (Meta), Qwen (Alibaba), Mistral (Mistral AI), and DeepSeek
(DeepSeek AI) are known as open (Open Weights/Open Model).

• The Hugging Face Hub is a major platform for their distribution [7].

• You can download the architecture and checkpoints to run locally.

• Licenses are (usually) clearly stated in the model repositories.
[8, 9, 10, 11, 12]

10/55



2. Degrees of Openness with Examples

Example ("Open" Models and Distribution Platforms)
Models like Llama (Meta), Qwen (Alibaba), Mistral (Mistral AI), and DeepSeek
(DeepSeek AI) are known as open (Open Weights/Open Model).

• The Hugging Face Hub is a major platform for their distribution [7].

• You can download the architecture and checkpoints to run locally.

• Licenses are (usually) clearly stated in the model repositories.
[8, 9, 10, 11, 12]

10/55



2. Degrees of Openness with Examples

Example ("Open" Models and Distribution Platforms)
Models like Llama (Meta), Qwen (Alibaba), Mistral (Mistral AI), and DeepSeek
(DeepSeek AI) are known as open (Open Weights/Open Model).

• The Hugging Face Hub is a major platform for their distribution [7].

• You can download the architecture and checkpoints to run locally.

• Licenses are (usually) clearly stated in the model repositories.
[8, 9, 10, 11, 12]

10/55



What Does "Open" Mean?



3. What Does "Open" Mean?

Generally, when a model is called "open," it means that at a minimum, the
following are publicly available:

• The architecture (as configuration files or code).

• The trained checkpoint (the weights).

11/55



3. What Does "Open" Mean?

Generally, when a model is called "open," it means that at a minimum, the
following are publicly available:

• The architecture (as configuration files or code).

• The trained checkpoint (the weights).

11/55



3. What Does "Open" Mean?

Generally, when a model is called "open," it means that at a minimum, the
following are publicly available:

• The architecture (as configuration files or code).

• The trained checkpoint (the weights).

11/55



3. What Does "Open" Mean?

So, what is often not disclosed even for "open" models?

Typically, the private components are:

• The training data.

• The training algorithm (including the complete training recipe and scripts for
reproduction).

12/55



3. What Does "Open" Mean?

So, what is often not disclosed even for "open" models?

Typically, the private components are:

• The training data.

• The training algorithm (including the complete training recipe and scripts for
reproduction).

12/55



3. What Does "Open" Mean?

So, what is often not disclosed even for "open" models?

Typically, the private components are:

• The training data.

• The training algorithm (including the complete training recipe and scripts for
reproduction).

12/55



3. What Does "Open" Mean?

Remark (Feasibility of Inference and Training)
With the architecture f(·) and checkpoint θ, inference is possible.

However, reproducing the training (arriving at the exact same θ) is usually
impossible unless the data, recipe, random seeds, etc., are identical.

Even with "open weights," if the insights from the training process are not
disclosed, the reproducibility and potential for adaptation are limited.

13/55



3. What Does "Open" Mean?

Remark (Feasibility of Inference and Training)
With the architecture f(·) and checkpoint θ, inference is possible.

However, reproducing the training (arriving at the exact same θ) is usually
impossible unless the data, recipe, random seeds, etc., are identical.

Even with "open weights," if the insights from the training process are not
disclosed, the reproducibility and potential for adaptation are limited.

13/55



3. What Does "Open" Mean?

Remark (Feasibility of Inference and Training)
With the architecture f(·) and checkpoint θ, inference is possible.

However, reproducing the training (arriving at the exact same θ) is usually
impossible unless the data, recipe, random seeds, etc., are identical.

Even with "open weights," if the insights from the training process are not
disclosed, the reproducibility and potential for adaptation are limited.

13/55



3.1 Visualizing the Relationship

This diagram uses our framework to show what’s typically open vs. private.

Training Data D

Often Private

Training Algorithm A

Often Private

Checkpoint θ∗

Often Public

Architecture f(·)

Often Public

Training

New Input x
Trained Model fθ∗

(Arch. + Checkpoint)

Often Public

Predicted Output y

Inference

14/55



Specific Examples of Release
Stages



4. Specific Examples of Release Stages

UI/API-only Release (Hosted)

• Only an inference service is provided.

• The weights and detailed implementation remain private.

• Example: OpenAI’s generally available models like GPT-4 and beyond [6].

15/55



4. Specific Examples of Release Stages

UI/API-only Release (Hosted)

• Only an inference service is provided.

• The weights and detailed implementation remain private.

• Example: OpenAI’s generally available models like GPT-4 and beyond [6].

15/55



4. Specific Examples of Release Stages

UI/API-only Release (Hosted)

• Only an inference service is provided.

• The weights and detailed implementation remain private.

• Example: OpenAI’s generally available models like GPT-4 and beyond [6].

15/55



4. Specific Examples of Release Stages

UI/API-only Release (Hosted)

• Only an inference service is provided.

• The weights and detailed implementation remain private.

• Example: OpenAI’s generally available models like GPT-4 and beyond [6].

15/55



4. Specific Examples of Release Stages

Architecture + Checkpoint Release

• Weights are distributed as Open Weights.

• This allows for local execution or use as a starting point for retraining.

• Examples: Mistral 7B (Apache 2.0) [10], DeepSeek-R1 (MIT) [11].

• The training data and complete training procedures are often not
disclosed.

16/55



4. Specific Examples of Release Stages

Architecture + Checkpoint Release

• Weights are distributed as Open Weights.

• This allows for local execution or use as a starting point for retraining.

• Examples: Mistral 7B (Apache 2.0) [10], DeepSeek-R1 (MIT) [11].

• The training data and complete training procedures are often not
disclosed.

16/55



4. Specific Examples of Release Stages

Architecture + Checkpoint Release

• Weights are distributed as Open Weights.

• This allows for local execution or use as a starting point for retraining.

• Examples: Mistral 7B (Apache 2.0) [10], DeepSeek-R1 (MIT) [11].

• The training data and complete training procedures are often not
disclosed.

16/55



4. Specific Examples of Release Stages

Architecture + Checkpoint Release

• Weights are distributed as Open Weights.

• This allows for local execution or use as a starting point for retraining.

• Examples: Mistral 7B (Apache 2.0) [10], DeepSeek-R1 (MIT) [11].

• The training data and complete training procedures are often not
disclosed.

16/55



4. Specific Examples of Release Stages

Architecture + Checkpoint Release

• Weights are distributed as Open Weights.

• This allows for local execution or use as a starting point for retraining.

• Examples: Mistral 7B (Apache 2.0) [10], DeepSeek-R1 (MIT) [11].

• The training data and complete training procedures are often not
disclosed.

16/55



4. Specific Examples of Release Stages

Release of Training Code and Recipes

• Some initiatives also release data pipelines and training scripts.

• This is done to improve training reproducibility.

• Example: AI2’s OLMo project [13].

17/55



4. Specific Examples of Release Stages

Release of Training Code and Recipes

• Some initiatives also release data pipelines and training scripts.

• This is done to improve training reproducibility.

• Example: AI2’s OLMo project [13].

17/55



4. Specific Examples of Release Stages

Release of Training Code and Recipes

• Some initiatives also release data pipelines and training scripts.

• This is done to improve training reproducibility.

• Example: AI2’s OLMo project [13].

17/55



4. Specific Examples of Release Stages

Release of Training Code and Recipes

• Some initiatives also release data pipelines and training scripts.

• This is done to improve training reproducibility.

• Example: AI2’s OLMo project [13].

17/55



License Basics (For Source Code)



5. License Basics (For Source Code)

Here, we summarize four widely used Open Source Software (OSS) licenses.

The focus is on their practical implications.

Remark (Disclaimer)
Final determination of "can I use this?" must be based on the specific license
text and its scope.

18/55



5. License Basics (For Source Code)

Here, we summarize four widely used Open Source Software (OSS) licenses.

The focus is on their practical implications.

Remark (Disclaimer)
Final determination of "can I use this?" must be based on the specific license
text and its scope.

18/55



5. License Basics (For Source Code)

Here, we summarize four widely used Open Source Software (OSS) licenses.

The focus is on their practical implications.

Remark (Disclaimer)
Final determination of "can I use this?" must be based on the specific license
text and its scope.

18/55



5.1 MIT License

This license is very permissive, with minimal conditions.

• Conditions for users: Include the original copyright notice and permission
notice in copies or derivative works.

• Permissions for users: "Without restriction." Commercial use is permitted.

• Warranty and Liability: No warranty and no liability for the authors.

• Model examples: DeepSeek-v3, DeepSeek-R1 [11].

19/55



5.1 MIT License

This license is very permissive, with minimal conditions.

• Conditions for users: Include the original copyright notice and permission
notice in copies or derivative works.

• Permissions for users: "Without restriction." Commercial use is permitted.

• Warranty and Liability: No warranty and no liability for the authors.

• Model examples: DeepSeek-v3, DeepSeek-R1 [11].

19/55



5.1 MIT License

This license is very permissive, with minimal conditions.

• Conditions for users: Include the original copyright notice and permission
notice in copies or derivative works.

• Permissions for users: "Without restriction." Commercial use is permitted.

• Warranty and Liability: No warranty and no liability for the authors.

• Model examples: DeepSeek-v3, DeepSeek-R1 [11].

19/55



5.1 MIT License

This license is very permissive, with minimal conditions.

• Conditions for users: Include the original copyright notice and permission
notice in copies or derivative works.

• Permissions for users: "Without restriction." Commercial use is permitted.

• Warranty and Liability: No warranty and no liability for the authors.

• Model examples: DeepSeek-v3, DeepSeek-R1 [11].

19/55



5.1 MIT License

This license is very permissive, with minimal conditions.

• Conditions for users: Include the original copyright notice and permission
notice in copies or derivative works.

• Permissions for users: "Without restriction." Commercial use is permitted.

• Warranty and Liability: No warranty and no liability for the authors.

• Model examples: DeepSeek-v3, DeepSeek-R1 [11].

19/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.2 BSD 3-Clause License

Similar to MIT, this license is highly permissive.

It includes a clause prohibiting the use of developers’ or contributors’ names for
endorsement without permission [14].

• Conditions for users: Include notices; do not use names for promotion.

• Permissions for users: Essentially unrestricted, including commercial use.

• Warranty and Liability: No warranty and no liability.

• Model/Library example: The classic machine learning library scikit-learn
[15].

20/55



5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License.

It has the added benefit for users of an explicit grant of patent licenses [16].

• Conditions for users: Include notices. If you modify files, you must state
that.

• Permissions for users: Broad permissions, including commercial use.
Explicit patent grant.

• Model examples: Mistral 7B [10], Hugging Face Transformers library [17].

21/55



5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License.

It has the added benefit for users of an explicit grant of patent licenses [16].

• Conditions for users: Include notices. If you modify files, you must state
that.

• Permissions for users: Broad permissions, including commercial use.
Explicit patent grant.

• Model examples: Mistral 7B [10], Hugging Face Transformers library [17].

21/55



5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License.

It has the added benefit for users of an explicit grant of patent licenses [16].

• Conditions for users: Include notices. If you modify files, you must state
that.

• Permissions for users: Broad permissions, including commercial use.
Explicit patent grant.

• Model examples: Mistral 7B [10], Hugging Face Transformers library [17].

21/55



5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License.

It has the added benefit for users of an explicit grant of patent licenses [16].

• Conditions for users: Include notices. If you modify files, you must state
that.

• Permissions for users: Broad permissions, including commercial use.
Explicit patent grant.

• Model examples: Mistral 7B [10], Hugging Face Transformers library [17].

21/55



5.3 Apache License 2.0

This license grants users freedoms similar to the MIT License.

It has the added benefit for users of an explicit grant of patent licenses [16].

• Conditions for users: Include notices. If you modify files, you must state
that.

• Permissions for users: Broad permissions, including commercial use.
Explicit patent grant.

• Model examples: Mistral 7B [10], Hugging Face Transformers library [17].

21/55



5.4 GPL

The GPL (GNU General Public License) embodies the philosophy of Copyleft.

Copyleft: While allowing free use, modification, and redistribution, it obligates
derivative works to be under the same license.

This aims to ensure that the freedom of the software is perpetually inherited.

22/55



5.4 GPL

The GPL (GNU General Public License) embodies the philosophy of Copyleft.

Copyleft: While allowing free use, modification, and redistribution, it obligates
derivative works to be under the same license.

This aims to ensure that the freedom of the software is perpetually inherited.

22/55



5.4 GPL

The GPL (GNU General Public License) embodies the philosophy of Copyleft.

Copyleft: While allowing free use, modification, and redistribution, it obligates
derivative works to be under the same license.

This aims to ensure that the freedom of the software is perpetually inherited.

22/55



5.4 GPL

• GPLv3: Has a strong copyleft provision. If you distribute software containing
GPLv3 code, the source code of the entire software must be released under
GPLv3 [18].

• AGPL-3: A variant that closes the "server-side loophole." The source code
disclosure obligation is triggered even if the software is just used to provide a
service over a network, without being distributed.

• Model Example: YOLOv5 uses AGPL-3.0 [19].

23/55



5.4 GPL

• GPLv3: Has a strong copyleft provision. If you distribute software containing
GPLv3 code, the source code of the entire software must be released under
GPLv3 [18].

• AGPL-3: A variant that closes the "server-side loophole." The source code
disclosure obligation is triggered even if the software is just used to provide a
service over a network, without being distributed.

• Model Example: YOLOv5 uses AGPL-3.0 [19].

23/55



5.4 GPL

• GPLv3: Has a strong copyleft provision. If you distribute software containing
GPLv3 code, the source code of the entire software must be released under
GPLv3 [18].

• AGPL-3: A variant that closes the "server-side loophole." The source code
disclosure obligation is triggered even if the software is just used to provide a
service over a network, without being distributed.

• Model Example: YOLOv5 uses AGPL-3.0 [19].

23/55



5.4 GPL

Practical Implications of Copyleft Licenses:

• They impose strong restrictions on integration into services and mixing with
other code.

• This can lead to unintended requirements to disclose your own source code.

• Careful consideration is required, especially for commercial use.

24/55



5.4 GPL

Practical Implications of Copyleft Licenses:

• They impose strong restrictions on integration into services and mixing with
other code.

• This can lead to unintended requirements to disclose your own source code.

• Careful consideration is required, especially for commercial use.

24/55



5.4 GPL

Practical Implications of Copyleft Licenses:

• They impose strong restrictions on integration into services and mixing with
other code.

• This can lead to unintended requirements to disclose your own source code.

• Careful consideration is required, especially for commercial use.

24/55



5.4 GPL

Practical Implications of Copyleft Licenses:

• They impose strong restrictions on integration into services and mixing with
other code.

• This can lead to unintended requirements to disclose your own source code.

• Careful consideration is required, especially for commercial use.

24/55



5.5 The Danger of No License

What if source code or a model has no license specified?

Remark (Be cautious for “no license” situations)
If no license is specified, it is understood by default that all rights are reserved.

• You have no permission for use, modification, or redistribution [1, 2].

• Such materials should be avoided.

25/55



5.5 The Danger of No License

What if source code or a model has no license specified?

Remark (Be cautious for “no license” situations)
If no license is specified, it is understood by default that all rights are reserved.

• You have no permission for use, modification, or redistribution [1, 2].

• Such materials should be avoided.

25/55



5.5 The Danger of No License

What if source code or a model has no license specified?

Remark (Be cautious for “no license” situations)
If no license is specified, it is understood by default that all rights are reserved.

• You have no permission for use, modification, or redistribution [1, 2].

• Such materials should be avoided.

25/55



5.5 The Danger of No License

What if source code or a model has no license specified?

Remark (Be cautious for “no license” situations)
If no license is specified, it is understood by default that all rights are reserved.

• You have no permission for use, modification, or redistribution [1, 2].

• Such materials should be avoided.

25/55



Model-Specific Licenses
(Open-Weight Type)



6. Model-Specific Licenses (Open-Weight Type)

Recent open-weight models sometimes use custom terms that are not
standard OSS licenses.

These often include use restrictions or thresholds based on Monthly Active Users
(MAU).

26/55



6. Model-Specific Licenses (Open-Weight Type)

Recent open-weight models sometimes use custom terms that are not
standard OSS licenses.

These often include use restrictions or thresholds based on Monthly Active Users
(MAU).

26/55



6. Model-Specific Licenses

Example (Llama series (Meta))
The Community License for the Llama 3 series allows commercial use with
restrictions [8, 20].

• The terms are subject to conditions on scale and application.

• The 700 million MAU threshold clause is well-known for Llama 2 and 3.

27/55



6. Model-Specific Licenses

Example (Llama series (Meta))
The Community License for the Llama 3 series allows commercial use with
restrictions [8, 20].

• The terms are subject to conditions on scale and application.

• The 700 million MAU threshold clause is well-known for Llama 2 and 3.

27/55



6. Model-Specific Licenses

Example (Llama series (Meta))
The Community License for the Llama 3 series allows commercial use with
restrictions [8, 20].

• The terms are subject to conditions on scale and application.

• The 700 million MAU threshold clause is well-known for Llama 2 and 3.

27/55



6. Model-Specific Licenses

Example (Qwen 2.5 (Alibaba))
The license for the Qwen series can vary even within the same version family.

• The largest models (e.g., Qwen2.5-72B-Instruct) used a custom Qianwen
License with a 100 million MAU threshold [9].

• However, smaller models in the same series (e.g., Qwen2.5-7B-Instruct) are
licensed under the standard Apache License 2.0.

• Later versions, like Qwen 3, seem to have standardized on Apache 2.0.

28/55



6. Model-Specific Licenses

Example (Qwen 2.5 (Alibaba))
The license for the Qwen series can vary even within the same version family.

• The largest models (e.g., Qwen2.5-72B-Instruct) used a custom Qianwen
License with a 100 million MAU threshold [9].

• However, smaller models in the same series (e.g., Qwen2.5-7B-Instruct) are
licensed under the standard Apache License 2.0.

• Later versions, like Qwen 3, seem to have standardized on Apache 2.0.

28/55



6. Model-Specific Licenses

Example (Qwen 2.5 (Alibaba))
The license for the Qwen series can vary even within the same version family.

• The largest models (e.g., Qwen2.5-72B-Instruct) used a custom Qianwen
License with a 100 million MAU threshold [9].

• However, smaller models in the same series (e.g., Qwen2.5-7B-Instruct) are
licensed under the standard Apache License 2.0.

• Later versions, like Qwen 3, seem to have standardized on Apache 2.0.

28/55



6. Model-Specific Licenses

Example (Qwen 2.5 (Alibaba))
The license for the Qwen series can vary even within the same version family.

• The largest models (e.g., Qwen2.5-72B-Instruct) used a custom Qianwen
License with a 100 million MAU threshold [9].

• However, smaller models in the same series (e.g., Qwen2.5-7B-Instruct) are
licensed under the standard Apache License 2.0.

• Later versions, like Qwen 3, seem to have standardized on Apache 2.0.

28/55



6.1 CreativeML Open RAIL-M

The CreativeML Open RAIL-M license is used by image generation AIs like
Stable Diffusion [21].

RAIL stands for Responsible AI License.

It permits free use, modification, and distribution, but imposes explicit Use
Restrictions.

29/55



6.1 CreativeML Open RAIL-M

The CreativeML Open RAIL-M license is used by image generation AIs like
Stable Diffusion [21].

RAIL stands for Responsible AI License.

It permits free use, modification, and distribution, but imposes explicit Use
Restrictions.

29/55



6.1 CreativeML Open RAIL-M

The CreativeML Open RAIL-M license is used by image generation AIs like
Stable Diffusion [21].

RAIL stands for Responsible AI License.

It permits free use, modification, and distribution, but imposes explicit Use
Restrictions.

29/55



6.1 CreativeML Open RAIL-M

The license includes clauses that prohibit use for purposes such as:

• Illegal purposes

• Generating content intended to harm or exploit others

• Spreading misinformation or disinformation

• Uses that violate individual privacy

It also requires that when distributing derivative works, the same use
restrictions must be imposed on downstream users.

30/55



6.1 CreativeML Open RAIL-M

The license includes clauses that prohibit use for purposes such as:

• Illegal purposes

• Generating content intended to harm or exploit others

• Spreading misinformation or disinformation

• Uses that violate individual privacy

It also requires that when distributing derivative works, the same use
restrictions must be imposed on downstream users.

30/55



6.2 Creative Commons

While CC licenses are widely used for documents, images, and data, they are
generally unsuitable for software/models.

• They were not designed with source code and executable programs in mind.
• Key variations include:

• CC BY 4.0 (Attribution) [22]
• CC BY-SA 4.0 (ShareAlike) [23]
• CC BY-NC 4.0 (NonCommercial) [24]

31/55



6.2 Creative Commons

While CC licenses are widely used for documents, images, and data, they are
generally unsuitable for software/models.

• They were not designed with source code and executable programs in mind.

• Key variations include:
• CC BY 4.0 (Attribution) [22]
• CC BY-SA 4.0 (ShareAlike) [23]
• CC BY-NC 4.0 (NonCommercial) [24]

31/55



6.2 Creative Commons

While CC licenses are widely used for documents, images, and data, they are
generally unsuitable for software/models.

• They were not designed with source code and executable programs in mind.
• Key variations include:

• CC BY 4.0 (Attribution) [22]
• CC BY-SA 4.0 (ShareAlike) [23]
• CC BY-NC 4.0 (NonCommercial) [24]

31/55



Case Study: Separation of Rights
Holders



7. Case Study: Separation of Rights Holders

It is crucial to understand that the license for the code and the license for the
weights can be different.

Example
The Hugging Face Transformers library is under the permissive Apache 2.0
license [17].

However, the license for each checkpoint you download to use with that library
is separate.

32/55



7. Case Study: Separation of Rights Holders

It is crucial to understand that the license for the code and the license for the
weights can be different.

Example
The Hugging Face Transformers library is under the permissive Apache 2.0
license [17].

However, the license for each checkpoint you download to use with that library
is separate.

32/55



7. Case Study: Separation of Rights Holders

It is crucial to understand that the license for the code and the license for the
weights can be different.

Example
The Hugging Face Transformers library is under the permissive Apache 2.0
license [17].

However, the license for each checkpoint you download to use with that library
is separate.

32/55



7. Case Study: Separation of Rights Holders

Rights and conditions differ for each set of weights.

You must check the model card and LICENSE file for each specific model [7].

For example, within the same Transformers framework:

• DeepSeek-R1 weights are MIT [11].

• The Mistral family is Apache 2.0 [10].

• The Llama family has its own custom license [8, 9].

33/55



7. Case Study: Separation of Rights Holders

Rights and conditions differ for each set of weights.

You must check the model card and LICENSE file for each specific model [7].

For example, within the same Transformers framework:

• DeepSeek-R1 weights are MIT [11].

• The Mistral family is Apache 2.0 [10].

• The Llama family has its own custom license [8, 9].

33/55



7. Case Study: Separation of Rights Holders

Rights and conditions differ for each set of weights.

You must check the model card and LICENSE file for each specific model [7].

For example, within the same Transformers framework:

• DeepSeek-R1 weights are MIT [11].

• The Mistral family is Apache 2.0 [10].

• The Llama family has its own custom license [8, 9].

33/55



Model Versions and License
Differences Across Versions



9. Model Versions and License Differences

Companies often release multiple models under the same series name.

However, there is no guarantee that the licenses for all models in a series will be
the same.
Example (Qwen 2.5 (Alibaba))
As we saw, different models in the Qwen 2.5 series had different licenses
(custom vs. Apache 2.0) [9]. You must check the license for the specific model
you wish to use.

34/55



9. Model Versions and License Differences

Companies often release multiple models under the same series name.

However, there is no guarantee that the licenses for all models in a series will be
the same.

Example (Qwen 2.5 (Alibaba))
As we saw, different models in the Qwen 2.5 series had different licenses
(custom vs. Apache 2.0) [9]. You must check the license for the specific model
you wish to use.

34/55



9. Model Versions and License Differences

Companies often release multiple models under the same series name.

However, there is no guarantee that the licenses for all models in a series will be
the same.
Example (Qwen 2.5 (Alibaba))
As we saw, different models in the Qwen 2.5 series had different licenses
(custom vs. Apache 2.0) [9]. You must check the license for the specific model
you wish to use.

34/55



9. Model Versions and License Differences

You might be curious about names like "Qwen2.5-72B-Instruct".

While this course avoids deep dives into specific models, a brief explanation is
useful. Models in a series typically differ in:

• Scale: The number of parameters (e.g., 7B vs 72B).

• Fine-tuning: Whether it’s a base model or tuned for a specific task (e.g.,
"Instruct").

35/55



9. Model Versions and License Differences

You might be curious about names like "Qwen2.5-72B-Instruct".

While this course avoids deep dives into specific models, a brief explanation is
useful. Models in a series typically differ in:

• Scale: The number of parameters (e.g., 7B vs 72B).

• Fine-tuning: Whether it’s a base model or tuned for a specific task (e.g.,
"Instruct").

35/55



9. Model Versions and License Differences

You might be curious about names like "Qwen2.5-72B-Instruct".

While this course avoids deep dives into specific models, a brief explanation is
useful. Models in a series typically differ in:

• Scale: The number of parameters (e.g., 7B vs 72B).

• Fine-tuning: Whether it’s a base model or tuned for a specific task (e.g.,
"Instruct").

35/55



9.1 Number of Parameters (Billion Parameters)

The scale of a model is expressed by the total number of real numbers in its
checkpoint (parameters).

"7B" means the checkpoint contains approximately 7 billion (7× 109) parameters.

In mathematical terms, the parameters (checkpoint) are a real vector:

θ = (θ1, θ2, . . . , θD) ∈ RD.

A "7B model" means the dimension D of this vector is approximately 7 billion.

Generally, a higher parameter count increases expressive power but also
computational cost.

36/55



9.1 Number of Parameters (Billion Parameters)

The scale of a model is expressed by the total number of real numbers in its
checkpoint (parameters).

"7B" means the checkpoint contains approximately 7 billion (7× 109) parameters.

In mathematical terms, the parameters (checkpoint) are a real vector:

θ = (θ1, θ2, . . . , θD) ∈ RD.

A "7B model" means the dimension D of this vector is approximately 7 billion.

Generally, a higher parameter count increases expressive power but also
computational cost.

36/55



9.1 Number of Parameters (Billion Parameters)

The scale of a model is expressed by the total number of real numbers in its
checkpoint (parameters).

"7B" means the checkpoint contains approximately 7 billion (7× 109) parameters.

In mathematical terms, the parameters (checkpoint) are a real vector:

θ = (θ1, θ2, . . . , θD) ∈ RD.

A "7B model" means the dimension D of this vector is approximately 7 billion.

Generally, a higher parameter count increases expressive power but also
computational cost.

36/55



9.1 Number of Parameters (Billion Parameters)

The scale of a model is expressed by the total number of real numbers in its
checkpoint (parameters).

"7B" means the checkpoint contains approximately 7 billion (7× 109) parameters.

In mathematical terms, the parameters (checkpoint) are a real vector:

θ = (θ1, θ2, . . . , θD) ∈ RD.

A "7B model" means the dimension D of this vector is approximately 7 billion.

Generally, a higher parameter count increases expressive power but also
computational cost.

36/55



9.2 Numerical Representation

Each parameter θi is stored on a computer in a specific numerical format. This
affects the model’s file size and inference speed.

Common formats include:

• fp32 (single-precision): 32 bits. High precision, large memory. A 7B fp32
model needs about 7× 4 = 28 GB.

• fp16 (half-precision): 16 bits. Halves memory usage, but has a smaller
dynamic range.

• bf16 (Bfloat16): 16 bits. Wide dynamic range like fp32, but lower precision
than fp16. Good for training stability [25].

• Quantization: Using even fewer bits (e.g., int8, int4). Drastically reduces
size and speeds up inference, often with a small accuracy drop.

37/55



9.2 Numerical Representation

Each parameter θi is stored on a computer in a specific numerical format. This
affects the model’s file size and inference speed.

Common formats include:

• fp32 (single-precision): 32 bits. High precision, large memory. A 7B fp32
model needs about 7× 4 = 28 GB.

• fp16 (half-precision): 16 bits. Halves memory usage, but has a smaller
dynamic range.

• bf16 (Bfloat16): 16 bits. Wide dynamic range like fp32, but lower precision
than fp16. Good for training stability [25].

• Quantization: Using even fewer bits (e.g., int8, int4). Drastically reduces
size and speeds up inference, often with a small accuracy drop.

37/55



9.2 Numerical Representation

Each parameter θi is stored on a computer in a specific numerical format. This
affects the model’s file size and inference speed.

Common formats include:

• fp32 (single-precision): 32 bits. High precision, large memory. A 7B fp32
model needs about 7× 4 = 28 GB.

• fp16 (half-precision): 16 bits. Halves memory usage, but has a smaller
dynamic range.

• bf16 (Bfloat16): 16 bits. Wide dynamic range like fp32, but lower precision
than fp16. Good for training stability [25].

• Quantization: Using even fewer bits (e.g., int8, int4). Drastically reduces
size and speeds up inference, often with a small accuracy drop.

37/55



9.2 Numerical Representation

Each parameter θi is stored on a computer in a specific numerical format. This
affects the model’s file size and inference speed.

Common formats include:

• fp32 (single-precision): 32 bits. High precision, large memory. A 7B fp32
model needs about 7× 4 = 28 GB.

• fp16 (half-precision): 16 bits. Halves memory usage, but has a smaller
dynamic range.

• bf16 (Bfloat16): 16 bits. Wide dynamic range like fp32, but lower precision
than fp16. Good for training stability [25].

• Quantization: Using even fewer bits (e.g., int8, int4). Drastically reduces
size and speeds up inference, often with a small accuracy drop.

37/55



9.2 Numerical Representation

Each parameter θi is stored on a computer in a specific numerical format. This
affects the model’s file size and inference speed.

Common formats include:

• fp32 (single-precision): 32 bits. High precision, large memory. A 7B fp32
model needs about 7× 4 = 28 GB.

• fp16 (half-precision): 16 bits. Halves memory usage, but has a smaller
dynamic range.

• bf16 (Bfloat16): 16 bits. Wide dynamic range like fp32, but lower precision
than fp16. Good for training stability [25].

• Quantization: Using even fewer bits (e.g., int8, int4). Drastically reduces
size and speeds up inference, often with a small accuracy drop.

37/55



9.2.1 Precise Definition of Floating-Point Numbers

The standard for floating-point numbers is IEEE 754. A number is represented by
three parts: a Sign, an Exponent, and a Mantissa/Fraction.

A value V is defined as:

V = (−1)S × (1.M)2 × 2E−bias

Table 1: Bit Allocation for Floating-Point Formats

Format Total Bits Sign Exponent Mantissa Bias

fp32 32 1 8 23 127
fp16 16 1 5 10 15
bf16 16 1 8 7 127

38/55



9.2.1 Precise Definition of Floating-Point Numbers

The standard for floating-point numbers is IEEE 754. A number is represented by
three parts: a Sign, an Exponent, and a Mantissa/Fraction.

A value V is defined as:

V = (−1)S × (1.M)2 × 2E−bias

Table 1: Bit Allocation for Floating-Point Formats

Format Total Bits Sign Exponent Mantissa Bias

fp32 32 1 8 23 127
fp16 16 1 5 10 15
bf16 16 1 8 7 127

38/55



9.2.1 Precise Definition of Floating-Point Numbers

The standard for floating-point numbers is IEEE 754. A number is represented by
three parts: a Sign, an Exponent, and a Mantissa/Fraction.

A value V is defined as:

V = (−1)S × (1.M)2 × 2E−bias

Table 1: Bit Allocation for Floating-Point Formats

Format Total Bits Sign Exponent Mantissa Bias

fp32 32 1 8 23 127
fp16 16 1 5 10 15
bf16 16 1 8 7 127

38/55



9.2.2 Comparison of fp16 and bf16

Although both are 16-bit formats, their characteristics differ significantly.

• fp16: Longer mantissa (10 bits) =⇒ high precision. Shorter exponent (5
bits) =⇒ narrow dynamic range. Prone to overflow or underflow.

• bf16: Longer exponent (8 bits) =⇒ wide dynamic range (same as fp32).
Shorter mantissa (7 bits) =⇒ lower precision.

39/55



9.2.2 Comparison of fp16 and bf16

Although both are 16-bit formats, their characteristics differ significantly.

• fp16: Longer mantissa (10 bits) =⇒ high precision. Shorter exponent (5
bits) =⇒ narrow dynamic range. Prone to overflow or underflow.

• bf16: Longer exponent (8 bits) =⇒ wide dynamic range (same as fp32).
Shorter mantissa (7 bits) =⇒ lower precision.

39/55



9.2.2 Comparison of fp16 and bf16

Although both are 16-bit formats, their characteristics differ significantly.

• fp16: Longer mantissa (10 bits) =⇒ high precision. Shorter exponent (5
bits) =⇒ narrow dynamic range. Prone to overflow or underflow.

• bf16: Longer exponent (8 bits) =⇒ wide dynamic range (same as fp32).
Shorter mantissa (7 bits) =⇒ lower precision.

39/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in bf16 but not in fp16)
Large number: Consider V = 100, 000.

• fp16: The maximum representable value is 65,504. Therefore, 100, 000
overflows to infinity (∞).

• bf16: Has the same dynamic range as fp32. It can be represented without
issue.

40/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in bf16 but not in fp16)
Large number: Consider V = 100, 000.

• fp16: The maximum representable value is 65,504. Therefore, 100, 000
overflows to infinity (∞).

• bf16: Has the same dynamic range as fp32. It can be represented without
issue.

40/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in bf16 but not in fp16)
Large number: Consider V = 100, 000.

• fp16: The maximum representable value is 65,504. Therefore, 100, 000
overflows to infinity (∞).

• bf16: Has the same dynamic range as fp32. It can be represented without
issue.

40/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in fp16 but not in bf16)

A number requiring precision: Consider V = 1 + 2−8 = 1.00390625. In binary,
this is (1.00000001)2.

• fp16: The mantissa has 10 bits. It can accurately represent the ‘1‘ in the 8th
decimal place.

• bf16: The mantissa has only 7 bits. The 8th bit does not fit and is rounded. It
cannot distinguish between 1 and 1 + 2−8.

41/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in fp16 but not in bf16)

A number requiring precision: Consider V = 1 + 2−8 = 1.00390625. In binary,
this is (1.00000001)2.

• fp16: The mantissa has 10 bits. It can accurately represent the ‘1‘ in the 8th
decimal place.

• bf16: The mantissa has only 7 bits. The 8th bit does not fit and is rounded. It
cannot distinguish between 1 and 1 + 2−8.

41/55



9.2.2 Comparison of fp16 and bf16

Example (A number representable in fp16 but not in bf16)

A number requiring precision: Consider V = 1 + 2−8 = 1.00390625. In binary,
this is (1.00000001)2.

• fp16: The mantissa has 10 bits. It can accurately represent the ‘1‘ in the 8th
decimal place.

• bf16: The mantissa has only 7 bits. The 8th bit does not fit and is rounded. It
cannot distinguish between 1 and 1 + 2−8.

41/55



9.3 Instruction Finetuning

Suffixes like “Instruct” or “Chat” suggest the model has undergone Instruction
Finetuning.

• A base large language model (foundation model) is trained to predict the next
word.

• Additional fine-tuning is performed using a dataset of "instruction (prompt)
and desired response" pairs [26].

• This teaches the model to be a helpful assistant, follow diverse instructions,
and engage in conversation.

42/55



9.3 Instruction Finetuning

Suffixes like “Instruct” or “Chat” suggest the model has undergone Instruction
Finetuning.

• A base large language model (foundation model) is trained to predict the next
word.

• Additional fine-tuning is performed using a dataset of "instruction (prompt)
and desired response" pairs [26].

• This teaches the model to be a helpful assistant, follow diverse instructions,
and engage in conversation.

42/55



9.3 Instruction Finetuning

Suffixes like “Instruct” or “Chat” suggest the model has undergone Instruction
Finetuning.

• A base large language model (foundation model) is trained to predict the next
word.

• Additional fine-tuning is performed using a dataset of "instruction (prompt)
and desired response" pairs [26].

• This teaches the model to be a helpful assistant, follow diverse instructions,
and engage in conversation.

42/55



9.3 Instruction Finetuning

Suffixes like “Instruct” or “Chat” suggest the model has undergone Instruction
Finetuning.

• A base large language model (foundation model) is trained to predict the next
word.

• Additional fine-tuning is performed using a dataset of "instruction (prompt)
and desired response" pairs [26].

• This teaches the model to be a helpful assistant, follow diverse instructions,
and engage in conversation.

42/55



Practical Guidelines and Caveats



10. Practical Guidelines and Caveats

• "Open" does not mean free to use: The license text governs everything.
Always check the LICENSE and Terms of Service on the model page.

• Apache 2.0 is a safe choice: If you want your model to be widely used but
have little commercial intent, Apache 2.0 is easy to handle due to the clarity of
its patent clauses [16].

• The legal nature of checkpoints is an immature area: It is reasonable to
consider them as having aspects of both source code and data. No legal
consensus has been established [27, 28].

• A policy of "when in doubt, do not use" is the safest approach.

43/55



10. Practical Guidelines and Caveats

• "Open" does not mean free to use: The license text governs everything.
Always check the LICENSE and Terms of Service on the model page.

• Apache 2.0 is a safe choice: If you want your model to be widely used but
have little commercial intent, Apache 2.0 is easy to handle due to the clarity of
its patent clauses [16].

• The legal nature of checkpoints is an immature area: It is reasonable to
consider them as having aspects of both source code and data. No legal
consensus has been established [27, 28].

• A policy of "when in doubt, do not use" is the safest approach.

43/55



10. Practical Guidelines and Caveats

• "Open" does not mean free to use: The license text governs everything.
Always check the LICENSE and Terms of Service on the model page.

• Apache 2.0 is a safe choice: If you want your model to be widely used but
have little commercial intent, Apache 2.0 is easy to handle due to the clarity of
its patent clauses [16].

• The legal nature of checkpoints is an immature area: It is reasonable to
consider them as having aspects of both source code and data. No legal
consensus has been established [27, 28].

• A policy of "when in doubt, do not use" is the safest approach.

43/55



10. Practical Guidelines and Caveats

• "Open" does not mean free to use: The license text governs everything.
Always check the LICENSE and Terms of Service on the model page.

• Apache 2.0 is a safe choice: If you want your model to be widely used but
have little commercial intent, Apache 2.0 is easy to handle due to the clarity of
its patent clauses [16].

• The legal nature of checkpoints is an immature area: It is reasonable to
consider them as having aspects of both source code and data. No legal
consensus has been established [27, 28].

• A policy of "when in doubt, do not use" is the safest approach.

43/55



Summary



11. Summary

• Many "open models" release their architecture and checkpoints, but the
training data and learning algorithms are often kept private.

• Even if a model is "public," whether third parties can freely use it is
determined by its license.

• In practice, one must understand the nature of licenses like MIT / BSD-3 /
Apache 2.0 / GPL-3 and always check the LICENSE and model card for
each model.

44/55



11. Summary

• Many "open models" release their architecture and checkpoints, but the
training data and learning algorithms are often kept private.

• Even if a model is "public," whether third parties can freely use it is
determined by its license.

• In practice, one must understand the nature of licenses like MIT / BSD-3 /
Apache 2.0 / GPL-3 and always check the LICENSE and model card for
each model.

44/55



11. Summary

• Many "open models" release their architecture and checkpoints, but the
training data and learning algorithms are often kept private.

• Even if a model is "public," whether third parties can freely use it is
determined by its license.

• In practice, one must understand the nature of licenses like MIT / BSD-3 /
Apache 2.0 / GPL-3 and always check the LICENSE and model card for
each model.

44/55



Next Time



12. Next Time

Next time, we will download and run a specific open large language model
locally.

This hands-on exercise will confirm the division of roles between:

• The neural network part (architecture + checkpoint).

• The surrounding components (tokenizer, pre/post-processing, inference
runtime).

45/55



12. Next Time

Next time, we will download and run a specific open large language model
locally.

This hands-on exercise will confirm the division of roles between:

• The neural network part (architecture + checkpoint).

• The surrounding components (tokenizer, pre/post-processing, inference
runtime).

45/55



12. Next Time

Next time, we will download and run a specific open large language model
locally.

This hands-on exercise will confirm the division of roles between:

• The neural network part (architecture + checkpoint).

• The surrounding components (tokenizer, pre/post-processing, inference
runtime).

45/55



Reference i

[1] GitHub Docs.
Licensing a repository.
https://docs.github.com/articles/licensing-a-repository.

[2] Choose a License.
No license.
https://choosealicense.com/no-permission/.

[3] Open Source Guides.
The legal side of open source.
https://opensource.guide/legal/.

46/55

https://docs.github.com/articles/licensing-a-repository
https://choosealicense.com/no-permission/
https://opensource.guide/legal/


Reference ii

[4] OpenAI.
Better language models and their implications.
https://openai.com/index/better-language-models/, 2019.

[5] OpenAI.
Releasing gpt-2: 1.5b release.
https://openai.com/index/gpt-2-1-5b-release/, 2019.

[6] OpenAI.
Models.
https://platform.openai.com/docs/models, 2025.

47/55

https://openai.com/index/better-language-models/
https://openai.com/index/gpt-2-1-5b-release/
https://platform.openai.com/docs/models


Reference iii

[7] Hugging Face Docs.
Licenses (hub).
https://huggingface.co/docs/hub/en/repositories-licenses, 2025.

[8] Meta.
Llama community license.
https://ai.meta.com/llama/license/, 2023–2024.

[9] Alibaba Cloud.
Qwen license agreement (e.g., qwen2.5-72b-instruct).
https:

//huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE,
2024–2025.

48/55

https://huggingface.co/docs/hub/en/repositories-licenses
https://ai.meta.com/llama/license/
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE


Reference iv

[10] Mistral AI.
Announcing mistral 7b.
https://mistral.ai/news/announcing-mistral-7b/, 2023.

[11] DeepSeek-AI.
deepseek-ai/deepseek-r1.
https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/LICENSE,
2025.
LICENSE: MIT.

[12] Hugging Face Docs.
Downloading models.
https://huggingface.co/docs/hub/en/models-downloading, 2025.

49/55

https://mistral.ai/news/announcing-mistral-7b/
https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/LICENSE
https://huggingface.co/docs/hub/en/models-downloading


Reference v

[13] AI2.
Olmo: An open language model.
https://allenai.org/olmo, 2024–2025.

[14] Open Source Initiative.
The bsd 3-clause license.
https://opensource.org/license/bsd-3-clause/.

[15] scikit-learn.
License.
https://github.com/scikit-learn/scikit-learn/blob/main/COPYING.

50/55

https://allenai.org/olmo
https://opensource.org/license/bsd-3-clause/
https://github.com/scikit-learn/scikit-learn/blob/main/COPYING


Reference vi

[16] Apache Software Foundation.
Apache license, version 2.0.
http://www.apache.org/licenses/LICENSE-2.0.

[17] Hugging Face.
Transformers (license: Apache-2.0).
https://github.com/huggingface/transformers.

[18] Free Software Foundation.
Gnu general public license, version 3.
https://www.gnu.org/licenses/gpl-3.0.en.html.

51/55

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/huggingface/transformers
https://www.gnu.org/licenses/gpl-3.0.en.html


Reference vii

[19] Ultralytics.
yolov5 (license: Agpl-3.0).
https://github.com/ultralytics/yolov5/blob/master/LICENSE.

[20] Meta AI.
Introducing meta llama 3.
https://ai.meta.com/blog/meta-llama-3/, 2024.

[21] CompVis and Stability AI.
Creativeml open rail-m.
https://huggingface.co/spaces/CompVis/stable-diffusion-license/

raw/main/license.txt, 2022.

52/55

https://github.com/ultralytics/yolov5/blob/master/LICENSE
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/spaces/CompVis/stable-diffusion-license/raw/main/license.txt
https://huggingface.co/spaces/CompVis/stable-diffusion-license/raw/main/license.txt


Reference viii

[22] Creative Commons.
Attribution 4.0 international (cc by 4.0).
https://creativecommons.org/licenses/by/4.0/.

[23] Creative Commons.
Attribution-sharealike 4.0 international (cc by-sa 4.0).
https://creativecommons.org/licenses/by-sa/4.0/.

[24] Creative Commons.
Attribution-noncommercial 4.0 international (cc by-nc 4.0).
https://creativecommons.org/licenses/by-nc/4.0/.

53/55

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Reference ix

[25] D. Kalamkar et al.
Bfloat16: The secret to high performance on cloud tpus.
https://cloud.google.com/blog/products/ai-machine-learning/

bfloat16-the-secret-to-high-performance-on-cloud-tpus, 2019.

[26] Jason Wei et al.
Finetuned language models are zero-shot learners.
arXiv preprint arXiv:2109.01652, 2022.
ICLR 2022.

[27] Open Source Initiative.
Drafts of the open source ai definition.
https://opensource.org/ai/drafts, 2024–2025.

54/55

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://opensource.org/ai/drafts


Reference x

[28] All Things Open.
The open source ai definition: Why we need it.
https://allthingsopen.org/articles/

the-open-source-ai-definition-why-we-need-it, 2024.

55/55

https://allthingsopen.org/articles/the-open-source-ai-definition-why-we-need-it
https://allthingsopen.org/articles/the-open-source-ai-definition-why-we-need-it

