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Introduction



1.1 Review of the Previous Lecture

In the previous lecture, we discussed the pipeline concept, where a neural
network is combined with other algorithms.

• We learned that tokenization is the crucial entry and exit point for natural
language processing pipelines, converting between raw text strings and
sequences of tokens.

• We examined Byte Pair Encoding (BPE), understanding its motivation:
balancing sequence length reduction against the need to handle unknown
words.
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1.1 From Tokens to Probabilities

Building on what we’ve learned, today we address the next logical step.

• Premise: We now know how to convert text to and from token sequences.

• Question: How do we make a neural network generate a probable sequence
of tokens?

A neural network is a continuous function, but a token sequence is a discrete
object.

We will have the neural network represent a probabilistic language model and
use that model along with a pseudo-random number generator to build a token
generator.
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1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

• Understand the framework of viewing a continuous neural network as a
probabilistic language model by using softmax normalization to obtain a
probability mass function.

• Recursively construct a token generator from a probabilistic language model
and a pseudo-random number sequence.

• Rigorously define and generate token sequences using various samplers,
including greedy search, beam search, and methods involving temperature,
top-k, top-p, and repetition penalty.
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Preliminaries: Mathematical
Notations



2. Preliminaries: Mathematical Notations

Set:

• Sets: A
• Membership: x ∈ A
• Empty set: {}
• Roster notation: {a, b, c}
• Set-builder: {x ∈ A|P (x)}
• Cardinality: |A|
• Real numbers: R,R>0,R≥0

• Integers: Z,Z>0,Z≥0

• Integer range: [1, k]Z := {1, . . . , k}

Function:

• f : X → Y : f maps from X to Y.

• y = f(x): The output of f for input x.

Definition:

• (LHS) := (RHS): Left side is defined
by the right side.
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2. Preliminaries: Mathematical Notations

Sequence: Denoted by a = (a1, a2, . . . ).

• A function a : [1, n]Z → A.

• Length is denoted by |a|.

Vector: Denoted by v.

• A column of numbers, v ∈ Rn.

• i-th element is vi.

Matrix: Denoted by A.

• m× n matrix: A ∈ Rm,n.

• (i, j)-th element is ai,j .

• Transpose: A⊤.

Tensor: Denoted by A.

• Simply a multi-dimensional array.

• Vector→ 1st-order, Matrix→
2nd-order.
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Probabilistic Language Model



3.1 Motivation

A neural network fθ is typically a continuous function.

However, the desired output in natural language processing (a token sequence) is
a discrete object.

A function that is both continuous and has a discrete range must be a constant
function, which is not useful.

Solution: Instead of outputting the token sequence itself, the neural network
outputs scores for tokens. These scores are then converted into probabilities via
the softmax function, defining a probabilistic language model.

8/44



3.1 Motivation

A neural network fθ is typically a continuous function.

However, the desired output in natural language processing (a token sequence) is
a discrete object.

A function that is both continuous and has a discrete range must be a constant
function, which is not useful.

Solution: Instead of outputting the token sequence itself, the neural network
outputs scores for tokens. These scores are then converted into probabilities via
the softmax function, defining a probabilistic language model.

8/44



3.1 Motivation

A neural network fθ is typically a continuous function.

However, the desired output in natural language processing (a token sequence) is
a discrete object.

A function that is both continuous and has a discrete range must be a constant
function, which is not useful.

Solution: Instead of outputting the token sequence itself, the neural network
outputs scores for tokens. These scores are then converted into probabilities via
the softmax function, defining a probabilistic language model.

8/44



3.1 Motivation

A neural network fθ is typically a continuous function.

However, the desired output in natural language processing (a token sequence) is
a discrete object.

A function that is both continuous and has a discrete range must be a constant
function, which is not useful.

Solution: Instead of outputting the token sequence itself, the neural network
outputs scores for tokens. These scores are then converted into probabilities via
the softmax function, defining a probabilistic language model.

8/44



3.1 Motivation

Let’s formalize our terms.
Definition (Vocabulary and Token Sequences)
The set of all possible values a token can take is called the vocabulary, denoted
by V.

• For a vocabulary of size D, we identify V with the set of integers {1, 2, . . . , D}.
• The set of token sequences of length n is Vn.

• The set of all token sequences of any finite length is V∗ = V0 ∪ V1 ∪ V2 ∪ · · · .
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3.1 Motivation

Now we can define the central concept.

Definition (Probabilistic Language Model (Most General Form))
Let a finite vocabulary V = {1, 2, . . . , D} be fixed. A probabilistic language
model is a function P (·|·) that, given any finite-length token sequence
t = (t1, . . . , tn) ∈ Vn, returns the conditional probability mass function of the next
token.

More formally, for any t ∈ V∗, the following must hold:∑
v∈V

P (v|t) = 1 (1)
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3.1 Motivation

Remark
This definition is very general. It does not assume any specific model structure
like Markov properties, n-grams, or Transformers [4].

It also specifies the joint distribution of an entire sequence via the chain rule of
probability:

P ((t1, . . . , tn)) =

n∏
i=1

P (ti|(t1, . . . , ti−1))

Constructing the joint distribution directly is possible but harder to adapt for
arbitrary-length outputs compared to modeling conditional probabilities.
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3.2 Construction from a Neural Network

To construct a probabilistic language model from a neural network, we must solve
two issues:

• Handling Variable-Length Inputs: How can a fixed neural network
architecture process token sequences of different lengths?

• Handling Probability Constraints: How do we ensure the network’s output
is a valid probability distribution (non-negative and sums to 1)?
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3.2.1 Handling Variable-Length Inputs

This is addressed through special neural network architectures. Two general
approaches exist:

• Giant Neural Network Approach: Use a huge network that accepts a very
long input of fixed length L. Pad shorter inputs to match this length.

• Variable-Length Input Neural Network Model Approach: Use an
architecture with parameter sharing and recursive structures (like RNNs or
Transformers). This allows1 constructing a network f

(n)
θ tailored to the input

length n from a single set of parameters θ.

In practice, most successful models (CNNs, RNNs, Transformers) use the second
approach.

1On the other hand, the multi-layer perceptron, which many students learn first but is not often used
in practice, does not have such a recursive structure. The fact that neural networks with recursively
definable structures have been successful is a manifestation of some law of nature, and its
elucidation is an interesting research topic.

13/44



3.2.1 Handling Variable-Length Inputs

This is addressed through special neural network architectures. Two general
approaches exist:

• Giant Neural Network Approach: Use a huge network that accepts a very
long input of fixed length L. Pad shorter inputs to match this length.

• Variable-Length Input Neural Network Model Approach: Use an
architecture with parameter sharing and recursive structures (like RNNs or
Transformers). This allows1 constructing a network f

(n)
θ tailored to the input

length n from a single set of parameters θ.

In practice, most successful models (CNNs, RNNs, Transformers) use the second
approach.

1On the other hand, the multi-layer perceptron, which many students learn first but is not often used
in practice, does not have such a recursive structure. The fact that neural networks with recursively
definable structures have been successful is a manifestation of some law of nature, and its
elucidation is an interesting research topic.

13/44



3.2.1 Handling Variable-Length Inputs

This is addressed through special neural network architectures. Two general
approaches exist:

• Giant Neural Network Approach: Use a huge network that accepts a very
long input of fixed length L. Pad shorter inputs to match this length.

• Variable-Length Input Neural Network Model Approach: Use an
architecture with parameter sharing and recursive structures (like RNNs or
Transformers). This allows1 constructing a network f

(n)
θ tailored to the input

length n from a single set of parameters θ.

In practice, most successful models (CNNs, RNNs, Transformers) use the second
approach.

1On the other hand, the multi-layer perceptron, which many students learn first but is not often used
in practice, does not have such a recursive structure. The fact that neural networks with recursively
definable structures have been successful is a manifestation of some law of nature, and its
elucidation is an interesting research topic.

13/44



3.2.1 Handling Variable-Length Inputs

Remark (Difference between Variable-Length Input NN and an Infinite
Sequence of NNs)

A crucial point is that we don’t need to store an infinite number of networks f
(n)
θ

for all possible lengths n.

Instead, we only need an algorithm that can mechanically construct the specific
network f

(n)
θ on-the-fly, once the input length n is known.

This algorithm takes the input length, n, as an argument and dynamically
constructs the appropriate network architecture for that specific length. All we
need to store permanently is the fixed, finite-dimensional parameter vector θ.
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3.2.2 Handling Probability Constraints

How do we ensure the output vector represents a probability mass function?

The standard method is softmax normalization.
Definition (Construction via Softmax Normalization)

Given a variable-length input function f
(·)
θ that maps a sequence of length n to a

vector of scores in R|V|, f (n)
θ : Vn → R|V|.

The probability of token v given history t is defined as:

P
f
(·)
θ

(v | t) :=
exp

(
f
(|t|)
θ,v (t)

)
∑

u∈V exp
(
f
(|t|)
θ,u (t)

) (2)

The resulting function P
f
(·)
θ

(· | ·) is a probabilistic language model.
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3.2.2 Handling Probability Constraints

In practice, we often introduce a hyperparameter called temperature (T > 0) to
control the shape of the probability distribution.

Definition (Construction with Temperature)
The probability is defined by dividing the scores by T before applying softmax:

P
f
(·)
θ ,T

(v | t) :=
exp

(
1
T · f

(|t|)
θ,v (t)

)
∑

u∈V exp
(

1
T · f

(|t|)
θ,u (t)

) (3)
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3.2.2 Handling Probability Constraints

Remark

Changing the temperature T 2 controls the "peakedness" of the distribution.

• As T ↓ 0 (low temperature): The distribution becomes sharper. Differences in
scores are exaggerated, making the model more confident and deterministic.
The probability mass concentrates on the highest-scoring token.

• As T ↑ ∞ (high temperature): The distribution becomes flatter, approaching a
uniform distribution. The model becomes more random and diverse, giving
even low-scoring tokens a chance.

• When T = 1, we recover the original softmax definition.

2The name "temperature" originates from statistical mechanics (the Boltzmann distribution, a
probability distribution obtained by applying softmax to the product of the inverse of temperature and
the negative energy corresponding to f

(|t|)
θ,u (t) in the previous definition, is fundamental in statistical

mechanics). 17/44
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Token Generators



4.1 Two Basic Ideas

A probabilistic language model P (· | t) gives us the probability for the next token.
How do we use this to generate an entire sequence?

There are two fundamental strategies.

• Sampling (Stochastic): At each step, randomly draw the next token
according to the probability distribution P (· | t). This introduces diversity.

• Selecting the Maximum (Deterministic): At each step, simply pick the token
with the highest probability. This leads to more consistent but potentially
repetitive outputs.
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4.1 Two Basic Ideas

Sampling requires a source of randomness.

• True random numbers are hard to obtain on computers.

• We use a pseudo-random number generator (PRNG).

• A PRNG uses a deterministic algorithm and an initial seed to produce a
sequence of numbers that appears random (long period, high uniformity).

• A famous example is the Mersenne Twister3 [3].

3Note that while the Mersenne twister is excellent for most purposes, it is not suitable for
cryptographic applications.
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4.2 Definition: Pseudo-random Sequences and Token Generators

First, let’s define a pseudo-random sequence.

Definition (Pseudo-random sequence)
Given a fixed initial seed s ∈ Z, a generator PRNG deterministically returns an
infinite sequence of numbers in [0, 1), u(s) = (u1, u2, . . . ).

Now, we can define a token generator.

Definition (Token Generator (General Form))
A token generator is a deterministic function Gen(P,PRNG) that takes an input
sequence tin and a seed s, and returns an output sequence tout.

Gen(P,PRNG) : V∗ × Z→ V∗ (4)

Internally, it sequentially appends tokens based on the model P and the numbers
from u(s), stopping when a termination condition is met.
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4.2 Definition: Pseudo-random Sequences and Token Generators

Remark
If the initial seed s is fixed, the output is completely deterministic.

The apparent "randomness" comes entirely from the PRNG. The generation rule
itself is a deterministic mathematical function.
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4.3 Sampling

This is the most basic sampling method, also known as inverse transform
sampling.

Definition (Sampling using a Probabilistic Language Model)

Given an initial sequence t(0), a probabilistic model P , a PRNG, and a stopping
condition Stop. For i = 0, 1, 2, . . . :

1. If Stop(t(i)) is true, stop and return t(i).

2. Calculate the cumulative distribution function (CDF):
F (i)(v) :=

∑
u≤v P

(
u|t(i)

)
.

3. Get the next random number ui+1 from the PRNG.

4. Find the next token: ti+1 := min{ v ∈ V | F (i)(v) > ui+1 }.
5. Append the token: t(i+1) := (t(i), ti+1) and repeat.
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4.3 Sampling

Example (Two Steps of Naive Sampling)
Let V = {1, 2, 3}, input tin = (), and stop at length 2. The probability distributions
are:

P (· | ()) = (0.50, 0.30, 0.20)

P (· | (1)) = (0.30, 0.40, 0.30)

P (· | (2)) = (0.10, 0.20, 0.70)

P (· | (3)) = (0.60, 0.10, 0.30)

The PRNG gives us u1 = 0.68, u2 = 0.72. Let’s find the output.
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4.3 Sampling

Step 1:

• Current sequence t(0) = ().

• The probability distribution is P (·|()) = (0.50, 0.30, 0.20).

• The cumulative distribution (CDF) is F (0) = (0.50, 0.80, 1.00).

• Our first random number is u1 = 0.68.
• We look for the smallest token v where F (0)(v) > 0.68.

• F (0)(1) = 0.50 ≯ 0.68

• F (0)(2) = 0.80 > 0.68

• So, the next token is t1 = 2. New sequence t(1) = (2).
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4.3 Sampling

Step 2:

• Current sequence t(1) = (2).

• The probability distribution is P (·|(2)) = (0.10, 0.20, 0.70).

• The CDF is F (1) = (0.10, 0.30, 1.00).

• Our second random number is u2 = 0.72.
• We look for the smallest token v where F (1)(v) > 0.72.

• F (1)(1) = 0.10 ≯ 0.72

• F (1)(2) = 0.30 ≯ 0.72

• F (1)(3) = 1.00 > 0.72

• So, the next token is t2 = 3. New sequence t(2) = (2, 3).

The length is now 2, so we stop. The final output is (2, 3).
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4.3 Sampling

Exercise (Manual Calculation Exercise (Naive Sampling))
Let V = {1, 2, 3}, start with (), and stop at length 2.

P (· | ()) = (0.40, 0.40, 0.20)

P (· | (1)) = (0.25, 0.25, 0.50)

P (· | (2)) = (0.10, 0.70, 0.20)

P (· | (3)) = (0.50, 0.30, 0.20)

Given u1 = 0.41, u2 = 0.20, find the output sequence.
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4.3 Sampling

Answer
Step 1:

• t(0) = ().

• P (·|()) = (0.40, 0.40, 0.20).

• CDF: (0.40, 0.80, 1.00).

• u1 = 0.41. Since 0.40 < 0.41 ≤ 0.80, we select t1 = 2.

• New sequence: t(1) = (2).

Step 2:

• t(1) = (2).

• P (·|(2)) = (0.10, 0.70, 0.20).

• CDF: (0.10, 0.80, 1.00).

• u2 = 0.20. Since 0.10 < 0.20 ≤ 0.80, we select t2 = 2.

• New sequence: t(2) = (2, 2).

Stop. The output sequence is (2, 2).
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4.4 Modifying Probabilistic Language Models

In practice, the raw probability distribution from the model is often modified before
sampling.

Motivations:

• Preventing Repetition: Avoid generating monotonous, repetitive text.

• Excluding Low-Score Tokens: Avoid generating nonsensical text by
completely ruling out tokens that the model considers very unlikely.
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4.4 Modifying Probabilistic Language Models

Here are some popular techniques:

• Repetition Penalty [2]: Decrease the scores of tokens that have already
appeared in the generated sequence.

• Temperature: As we’ve seen, lowering T < 1 makes the distribution sharper
and less random.

• Top-k Sampling: Consider only the top k most probable tokens and set the
probability of all others to zero.

• Top-p (Nucleus) Sampling [1]: Consider the smallest set of most probable
tokens whose cumulative probability exceeds a threshold p. This set is called
the "nucleus."
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4.4 Modifying Probabilistic Language Models

These modifications are often applied in a specific order. Let’s look at the common
pipeline used by libraries like Hugging Face.

Definition (Construction of Conditional PMF in Hugging Face)

Given scores s|t for history t:

1. Apply repetition penalty.

2. Apply temperature scaling.

3. Apply top-k filtering.

4. Apply softmax to get probabilities π(v).

5. Apply top-p (nucleus) filtering and renormalize.
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4.4 Modifying Probabilistic Language Models

Let’s look closer at the repetition penalty step.

1. (repetition penalty) Let H(t) be the set of previously seen tokens and λ > 0

be the penalty factor.

srep
v|t ←


sv|t if v /∈ H(t),

1
λsv|t if v ∈ H(t) and sv|t ≥ 0,

λsv|t if v ∈ H(t) and sv|t < 0.
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4.4 Modifying Probabilistic Language Models

Example (Hugging Face Style Sampling)
Let V = {1, 2, 3, 4}, start with (), and stop at length 2. Scores:

s|() = (2.0, 1.0, 0.0, −1.0)
s|(1) = (1.5, 0.0, 0.5, −0.2)

Hyperparameters: T = 0.5, λ = 1.2, k = 3, p = 0.9. PRNG gives
u1 = 0.50, u2 = 0.90. Find the output.
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4.4 Modifying Probabilistic Language Models

Step 1 (History t = (), Seen tokens H(()) = {})

1. (rep) No tokens seen, scores unchanged: (2.0, 1.0, 0.0,−1.0).
2. (temp) Divide by T = 0.5 (i.e., multiply by 2): (4.0, 2.0, 0.0,−2.0).
3. (top-k) Keep top k = 3 scores. 4th score becomes −∞: (4.0, 2.0, 0.0,−∞).

4. (softmax) Probabilities π ≈ (0.8668, 0.1173, 0.0159, 0).

5. (top-p) Cumulative sum is (0.8668, 0.9841, . . . ). For p = 0.9, nucleus is {1, 2}.
Renormalize: π̃ ≈ (0.8808, 0.1192, 0, 0).

6. (sample) CDF is (0.8808, 1.0). u1 = 0.50 < 0.8808 =⇒ t1 = 1.
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4.4 Modifying Probabilistic Language Models

Step 2 (History t = (1), Seen tokens H((1)) = {1})

1. (rep) Score for token 1: 1.5/λ = 1.5/1.2 = 1.25. Scores: (1.25, 0.0, 0.5,−0.2).
2. (temp) Divide by T = 0.5: (2.5, 0.0, 1.0,−0.4).
3. (top-k) Keep top k = 3 scores: (2.5, 0.0, 1.0,−∞).
4. (softmax) Probabilities π ≈ (0.7662, 0.0629, 0.1710, 0).
5. (top-p) Sorted probs: (0.76621, 0.17103, 0.06292). Cum sum:

(0.7662, 0.9372, . . . ). Nucleus is {1, 3}. Renormalize: π̃ ≈ (0.8176, 0, 0.1824, 0).

6. (sample) CDF is (0.8176, 0.8176, 1.0, 1.0). u2 = 0.90. Since
0.8176 < 0.90 ≤ 1.0, we select t2 = 3.

Final output: (1, 3).
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4.5 Selecting the Maximum Probability Element

Let’s now turn to the deterministic approach. The simplest method is greedy
search.
Definition (Greedy decoding)

Given an initial sequence t(0) and a stopping condition Stop. At each step i:

1. Select the token with the highest probability:

ti+1 := argmax
v∈V

P
(
v
∣∣∣t(i))

(Ties are broken by a fixed rule, e.g., lowest token ID).

2. Append the token: t(i+1) := (t(i), ti+1).

3. Repeat until Stop is met.
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4.5 Selecting the Maximum Probability Element

Example (Greedy Search (Two Steps, Numerical))
Let V = {1, 2, 3}, stop at length 2. Probabilities:

P (· | ()) = (0.55, 0.40, 0.05)

P (· | (1)) = (0.20, 0.70, 0.10)

• Step 1: Given (), the probabilities are (0.55, 0.40, 0.05). The max is at index 1.
So, t1 = 1.

• Step 2: Given (1), the probabilities are (0.20, 0.70, 0.10). The max is at index
2. So, t2 = 2.

The output is (1, 2).
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4.6 Limitations of Greedy Search and Beam Search

Greedy search does not guarantee finding the sequence with the highest
overall joint probability.

The joint probability of a sequence is P (t1, t2) = P (t1 | ()) · P (t2 | (t1)). A locally
optimal choice at step 1 might lead to a globally suboptimal sequence.

Example (Greedy Fails)
Let V = {A,B}, stop at length 2.

P (· | ()) = (0.60, 0.40)

P (· | (A)) = (0.50, 0.50)

P (· | (B)) = (0.95, 0.05)
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4.6 Limitations of Greedy Search and Beam Search

Greedy Search Path:

• Step 1: P (A|()) = 0.6 > P (B|()) = 0.4. Choose A.
• Step 2: P (A|(A)) = 0.5. Choose A (tie-break).
• Result: (A,A). Joint probability: P (A,A) = 0.6× 0.5 = 0.30.

True Best Sequence: Let’s check all possibilities:

• P (A,A) = 0.6× 0.5 = 0.30

• P (A,B) = 0.6× 0.5 = 0.30

• P (B,A) = 0.4× 0.95 = 0.38
• P (B,B) = 0.4× 0.05 = 0.02

The sequence (B,A) has the highest probability, but greedy search missed it.

38/44



4.6 Limitations of Greedy Search and Beam Search

Greedy Search Path:

• Step 1: P (A|()) = 0.6 > P (B|()) = 0.4. Choose A.
• Step 2: P (A|(A)) = 0.5. Choose A (tie-break).
• Result: (A,A). Joint probability: P (A,A) = 0.6× 0.5 = 0.30.

True Best Sequence: Let’s check all possibilities:

• P (A,A) = 0.6× 0.5 = 0.30

• P (A,B) = 0.6× 0.5 = 0.30

• P (B,A) = 0.4× 0.95 = 0.38
• P (B,B) = 0.4× 0.05 = 0.02

The sequence (B,A) has the highest probability, but greedy search missed it.

38/44



4.6 Limitations of Greedy Search and Beam Search

Beam search is an improvement over greedy search that addresses this issue.

Idea: Instead of keeping only the single best choice at each step, keep track of the
B most probable partial sequences (the "beam").

Definition (Beam Search (Beam width B))

1. Start with an empty sequence.
2. At each step i:

• For each of the B sequences currently in the beam, generate all |V| possible
next sequences and calculate their log-probabilities.

• From this set of B × |V| candidates, select the top B sequences with the highest
overall log-probabilities. These form the new beam.

3. Repeat until a stop condition is met, then return the highest-scoring sequence
from the final beam.
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4.6 Limitations of Greedy Search and Beam Search

Let’s re-run the previous example with beam search, using a beam width B = 2.

Step 1:

• Initial candidates: (A) with log-prob log(0.6) and (B) with log-prob log(0.4).
• Since B = 2, we keep both.
• Beam B1 = {(A, log 0.6), (B, log 0.4)}.

Step 2:

• Expand from A: (A,A) with log-prob log(0.6) + log(0.5) = log(0.3). And (A,B)

also with log-prob log(0.3).
• Expand from B: (B,A) with log-prob log(0.4) + log(0.95) = log(0.38). And
(B,B) with log-prob log(0.02).

• Candidates’ log-probs: {log 0.30, log 0.30, log 0.38, log 0.02}.
• The top 2 are (B,A) and (A,A) (or (A,B)). The best is (B,A).

Beam search successfully finds the optimal sequence (B,A).
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5. Summary

Let’s summarize the key takeaways from today’s lecture.

• Neural networks, being continuous functions, are naturally used as
probabilistic language models. They output scores, which are converted to
a probability mass function (PMF) via softmax. The joint probability of a
sequence is then defined by the chain rule.

• We can rigorously define various text generation methods within a unified
framework of a token generator, which is a deterministic function of a model,
a stopping condition, and a seed for a pseudo-random number generator.

• This framework includes methods like greedy search, beam search, and
various sampling techniques that modify the probability distribution using
temperature, top-k, top-p, and repetition penalty.
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7. Next Time

Next time, we will discuss the embedding layer.

This is the initial layer in many probabilistic language models. We will focus on:

• How it maps discrete tokens from the vocabulary into a continuous vector
space.

• The learning rules for this mapping.

• Its statistical interpretation.
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