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1 Introduction

1.1 Review

In the previous lecture, we focused on the token generator, learning about sampling, which
maps the continuous output of a neural network (such as a probability distribution for the
next token) to a discrete object in natural language (a specific token). In this lecture, we
reverse the perspective and make explicit the fact that when using a neural network as the
core of a token generator, it implicitly converts discrete objects (tokens) into continu-
ous objects (real-valued vectors). The component responsible for this is the embedding
layer.

1.2 Learning Outcomes

By the end of this lecture, students should be able to:

• Explain what an embedding layer does.

• Calculate the distances and similarities (Euclidean distance, standard inner prod-
uct, cosine similarity) between token representations (vectors) obtained through em-
bedding.

2 Mathematical Notations

Here is a review of the basic notation used in this lecture.

• Definition:

– (LHS) := (RHS): Indicates that the left-hand side (LHS) is defined by the right-
hand side (RHS). For example, 𝑎 := 𝑏 means 𝑎 is defined as 𝑏.

• Set:

– Sets are often denoted by uppercase calligraphic letters. E.g., A.

– 𝑥 ∈ A: Indicates that the element 𝑥 belongs to the set A.

– {}: The empty set.

– {𝑎, 𝑏, 𝑐}: The set consisting of elements 𝑎, 𝑏, 𝑐 (roster notation).

– {𝑥 ∈ A|𝑃(𝑥)}: The set of elements in A for which the proposition 𝑃(𝑥) is true
(set-builder notation).

– |A|: The number of elements in set A (in this lecture, generally used only for finite
sets).
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– R: The set of all real numbers.

– R>0: The set of all positive real numbers.

– R≥0: The set of all non-negative real numbers.

– Z: The set of all integers.

– Z>0: The set of all positive integers.

– Z≥0: The set of all non-negative integers.

– [1, 𝑘]Z: When 𝑘 is a positive integer, [1, 𝑘]Z := {1, 2, . . . , 𝑘}, i.e., the set of integers
from 1 to 𝑘. When 𝑘 = +∞, [1, 𝑘]Z := Z>0, i.e., the set of all positive integers.

• Function:

– 𝑓 : X → Y: Indicates that the function 𝑓 is a map that takes an element from set
X as input and outputs an element from set Y.

– 𝑦 = 𝑓 (𝑥): Indicates that the output is 𝑦 ∈ Y when 𝑥 ∈ X is input to function 𝑓 .

• Vector:

– In this course, a vector refers to a column of numbers.

– Vectors are denoted by bold italic lowercase letters. E.g., 𝒗.

– 𝒗 ∈ R𝑛: Indicates that the vector 𝒗 is an 𝑛-dimensional real-valued vector.

– The 𝑖-th element of vector 𝒗 is denoted as 𝑣𝑖.

𝒗 =


𝑣1

𝑣2
...

𝑣𝑛


. (1)

– For two vectors 𝒖, 𝒗 ∈ R𝑑emb , the standard inner product

• Sequence:

– Given a set A, an 𝑛 ∈ Z>0 ∪ {+∞}, and a function 𝒂 : [1, 𝑛]Z → A, we call 𝒂 a
sequence of length 𝑛 with elements from A. When 𝑛 < +∞, it is a finite sequence,
and when 𝑛 = ∞, it is an infinite sequence.

– Sequences are denoted by bold italic lowercase letters, similar to vectors. This is
because a finite sequence can be seen as an extension of a real-valued vector. In
fact, a finite sequence of real numbers can be regarded as a real-valued vector.

– For a sequence 𝒂 of length 𝑛 with elements from A, and for 𝑖 ∈ [1, 𝑛]Z, the 𝑖-th
component 𝑎𝑖 is defined as 𝑎𝑖 := 𝒂(𝑖).
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– When 𝑛 < +∞, a sequence 𝒂 of length 𝑛 with elements from A is determined by
its elements 𝑎1, 𝑎2, ..., 𝑎𝑛, and is written as 𝒂 = (𝑎1, 𝑎2, ..., 𝑎𝑛). Similarly, if 𝒂 is an
infinite sequence, we write 𝒂 = (𝑎1, 𝑎2, ...).

– The length of a sequence 𝒂 is written as |𝒂 |.

• Matrix:

– Matrices are denoted by bold italic uppercase letters. E.g., 𝑨.

– 𝑨 ∈ R𝑚,𝑛: Indicates that the matrix 𝑨 is a real-valued matrix with 𝑚 rows and 𝑛

columns.

– The element in the 𝑖-th row and 𝑗-th column of matrix 𝑨 is denoted as 𝑎𝑖, 𝑗 .

𝑨 =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛
...

...
. . .

...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛


. (2)

– The transpose of a matrix 𝑨 is denoted as 𝑨⊤. If 𝑨 ∈ R𝑚,𝑛, then 𝑨⊤ ∈ R𝑛,𝑚, and

𝑨⊤ =


𝑎1,1 𝑎2,1 · · · 𝑎𝑚,1

𝑎1,2 𝑎2,2 · · · 𝑎𝑚,2
...

...
. . .

...

𝑎1,𝑛 𝑎2,𝑛 · · · 𝑎𝑚,𝑛


. (3)

– A vector is a matrix with one column, and its transpose can also be defined.

𝒗⊤ =
[
𝑣1 𝑣2 · · · 𝑣𝑛

]
∈ R1,𝑛. (4)

• Tensor:

– In this lecture, the term tensor simply refers to a multi-dimensional array. A vector
can be considered a 1st-order tensor, and a matrix a 2nd-order tensor. Tensors of
3rd order or higher are denoted by an underlined bold italic uppercase letter, like
𝑨.

– Students who have already learned about abstract tensors in mathematics or
physics might feel uncomfortable calling a mere multi-dimensional array a ten-
sor. However, if we consider that the basis is always fixed to the standard basis,
we can identify the mathematical tensor with its component representation (which
becomes a multi-dimensional array), thus maintaining (some) terminological con-
sistency.
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3 One-Hot Encoding

3.1 Motivation

The appropriate distance relationships between tokens in natural language are not
known in advance. Therefore, to treat all tokens symmetrically (equally), we use the
simplest and most neutral representation, the one-hot vector.

Definition 3.1 (One-Hot Encoding). Consider a finite set V = {1, . . . , 𝑑in} with a vocabulary
size of 𝑑in ∈ Z>0. For 𝑖 ∈ V, the one-hot vector e𝑖 ∈ {0, 1}𝑑in is defined as:

(e𝑖) 𝑗 :=

1 ( 𝑗 = 𝑖)
0 ( 𝑗 ≠ 𝑖)

( 𝑗 ∈ [1, 𝑑in]Z). (5)

Remark 3.1. For any 𝑖 ≠ 𝑗 , we have ∥e𝑖 − e 𝑗 ∥2 =
√
2, which expresses neutrality (lack of prior

assumptions) by ensuring that the distance between all pairs of tokens is equal.

4 Mapping to the Next Layer with a Fully-Connected Layer

and the Emergence of Embedding

4.1 Symmetry and Fully-Connected Layer

When the input is one-hot, we have no choice but to treat each input node equally. On the
input side, there are 𝑑in scalar output nodes (each outputting the 𝑖-th component of e𝑖), and
they are symmetric. Under this symmetry, the natural connection to the next set of nodes
(with an intermediate representation dimension of 𝑑emb) is a fully-connected layer. Partially
introducing weight sharing risks treating tokens asymmetrically, so this is generally not
done here. (Full sharing across all dimensions would eliminate any difference). Thus, when
we assume a one-hot vector input and have a fully-connected layer where the weights are
independent for each edge connecting the set of input nodes to another set of nodes, we
call this part an embedding layer.

4.2 Matrix Representation and Equivalence to Linear Regression

As previously learned, a fully-connected layer is a linear map (equivalent to linear regres-
sion) and can be written using a matrix 𝑾 ∈ R𝑑emb, 𝑑in as:

𝒛 := 𝑾 𝒙 (𝒙 ∈ R𝑑in , 𝒛 ∈ R𝑑emb). (6)

Here, 𝒙 is a general input, which includes one-hot vectors.
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𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑧1

𝑧2

𝑧3

𝑤1,1×

𝑤 1,2
×

𝑤 1,
3
×𝑤2,1×

𝑤2,2×

𝑤 2,3
×𝑤
3,1×

𝑤3,2×
𝑤3,3×𝑤4,1 ×𝑤

4,2×
𝑤4,3×𝑤

5,1 ×𝑤
5,2 ×𝑤

5,3×

Figure 1: Fully-connected mapping from a one-hot input to the next layer (of dimension
𝑑emb). The right side shows the input (𝑑in scalar nodes), and the left side shows the next-
layer nodes (𝑑emb nodes). Each edge is assigned a weight 𝑤𝑖, 𝑗 .

4.3 Active Edges for a One-Hot Input

In particular, when 𝒙 = e𝑖, only the weights in the 𝑖-th column are involved:

𝑾 e𝑖 = 𝒘𝑖 (where 𝒘𝑖 is the 𝑖-th column of 𝑾). (7)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑧1

𝑧2

𝑧3

𝑤
3,1×

𝑤3,2×
𝑤3,3×

𝑥5 = 0

𝑥4 = 0

𝑥3 = 1

𝑥2 = 0

𝑥1 = 0

Figure 2: Edges that activate (black) when the input is 𝒙 = e3, and inactive edges (gray). In
this case, 𝑾e3 = 𝒘3 becomes the input to the next layer.

6



4.4 Equivalent Understanding of Embedding

Equation (7) means that ”feeding a one-hot vector e𝑖 into the first fully-connected layer”
is equivalent to ”directly providing the column vector 𝒘𝑖 to the group of output-side
nodes (head nodes) of that layer”. Note that 𝒘𝑖 is a learnable parameter that can be
updated during training (while the correspondence between the entity and its numerical rep-
resentation is fixed in the architecture formulation, the specific values of the column vector
are determined by learning).

Definition 4.1 (Embedding). The map defined by each column 𝒘𝑖 of the matrix 𝑾 ∈ R𝑑emb, 𝑑in ,

𝜄 : 𝑖 ∈ {1, . . . , 𝑑in} ↦→ 𝒘𝑖 ∈ R𝑑emb (8)

is called an embedding or embedding representation [1–3].

Remark 4.1. It is customary to call 𝒘𝑖 the representation of the 𝑖-th token or (though the
terminology can be slightly confusing) the embedding of the 𝑖-th token. Mathematically, an
”embedding” refers to an injective map from a space with structure to another space
that preserves the original structure in some sense. In practice, this name is used with
the expectation that the relationships between tokens in natural language will be reflected
in the relationships within the vector space (if the training converges normally, the probability
of columns being identical is extremely low, making the map effectively injective).

4.5 Vocabulary Extension (Adding Columns)

To add new token types later, we increase the dimension of the one-hot vectors. Graphi-
cally, this corresponds to adding input nodes and adding a set of fully-connected edges
from them to the next layer. In matrix representation, we can simply add new column vec-
tors to 𝑾 and make the number of columns match the new vocabulary size. Since each
column corresponds one-to-one with a token, it is theoretically possible to train only the
new columns (in practice, it is common to fine-tune the entire matrix simultaneously).

5 Distances and Similarities in the Embedding Space

If the embedding reflects semantic information to some extent, calculating the relationships
between vectors can have practical applications [1,2]. Here, we will strictly define the most
fundamental measures.

Definition 5.1 (Euclidean Distance). For 𝒖, 𝒗 ∈ R𝑑emb , the Euclidean distance 𝑑E(𝒖, 𝒗) be-
tween 𝒖 and 𝒗 is defined as:

𝑑E(𝒖, 𝒗) := ∥𝒖 − 𝒗∥2 =
√
(𝒖 − 𝒗)⊤(𝒖 − 𝒗). (9)
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The smaller the Euclidean distance between two vectors, the more similar the concepts
they represent can be considered. Although it is the most intuitive measure, it seems to be
used less frequently in natural language processing compared to the other two discussed
below.

Definition 5.2 (Standard Inner Product). For 𝒖, 𝒗 ∈ R𝑑emb , the Standard Inner Product ⟨𝒖, 𝒗⟩
of 𝒖 and 𝒗 is defined as:

⟨𝒖, 𝒗⟩ := 𝒖⊤𝒗 =
𝑑emb∑
𝑘=1

𝑢𝑘𝑣𝑘 . (10)

The larger the standard inner product of two vectors, the more similar the concepts
they represent can be considered. The most famous architecture that uses the standard
inner product between vectors derived from token representation vectors is probably the
Transformer [4].

Definition 5.3 (Cosine Similarity). For 𝒖, 𝒗 ∈ R𝑑emb \ {0}, the cosine similarity cos(𝒖, 𝒗) of 𝒖
and 𝒗 is defined as:

cos(𝒖, 𝒗) := ⟨𝒖, 𝒗⟩
∥𝒖∥2 ∥𝒗∥2

. (11)

As its name suggests, cosine similarity is the cosine of the angle between two vectors.
The larger the cosine similarity of two vectors, the more similar the concepts they represent
can be considered. It has many applications in natural language processing (e.g., [5]).

The following identity holds between these measures:

∥𝒖 − 𝒗∥22 = ∥𝒖∥22 + ∥𝒗∥22 − 2 ⟨𝒖, 𝒗⟩ (12)

= ∥𝒖∥22 + ∥𝒗∥22 − 2 ∥𝒖∥2 ∥𝒗∥2 cos(𝒖, 𝒗)

𝑥

𝑦

𝒖

𝒗

𝜃

∥𝒖 − 𝒗∥2
∥𝒗∥2∥𝒖∥2 cos 𝜃
= ⟨𝒖, 𝒗⟩

Figure 3: Geometry of the Euclidean distance (line segment between the vector tips), inner
product (length of the orthogonal projection), and cosine similarity (angle 𝜃) between two
vectors.
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5.1 Examples and Exercises

Example 5.1 (Euclidean Distance). For 𝒖 =


2

−1
3

 and 𝒗 =


1

2

−1

 :

𝒖 − 𝒗 =


2 − 1

−1 − 2

3 − (−1)

 =

1

−3
4

 , (13)

∥𝒖 − 𝒗∥2 =
√
12 + (−3)2 + 42 =

√
1 + 9 + 16 =

√
26. (14)

Exercise 5.1. Find the Euclidean distance 𝑑E(𝒂, 𝒃) for 𝒂 =


−1
4

2

 and 𝒃 =


3

0

−2

 .
Answer.

𝒂 − 𝒃 =


−1 − 3

4 − 0

2 − (−2)

 =

−4
4

4

 , (15)

∥𝒂 − 𝒃∥2 =
√
(−4)2 + 42 + 42 =

√
16 + 16 + 16 =

√
48 = 4

√
3. (16)

Example 5.2 (Inner Product). For 𝒖 =


2

−1
3

 and 𝒗 =


1

2

−1

 :
⟨𝒖, 𝒗⟩ = 2 · 1 + (−1) · 2 + 3 · (−1) = 2 − 2 − 3 = −3. (17)

Exercise 5.2. Find the inner product ⟨𝒂, 𝒃⟩ for 𝒂 =


−1
4

2

 and 𝒃 =


3

0

−2

 .
Answer.

⟨𝒂, 𝒃⟩ = (−1) · 3 + 4 · 0 + 2 · (−2) = −3 + 0 − 4 = −7. (18)
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Example 5.3 (Cosine Similarity). For 𝒖 =


2

−1
3

 and 𝒗 =


1

2

−1

 :
⟨𝒖, 𝒗⟩ = −3 (from Example 5.2), (19)

∥𝒖∥2 =
√
22 + (−1)2 + 32 =

√
4 + 1 + 9 =

√
14, (20)

∥𝒗∥2 =
√
12 + 22 + (−1)2 =

√
1 + 4 + 1 =

√
6, (21)

cos(𝒖, 𝒗) = −3
√
14

√
6
=

−3
√
84

=
−3

2
√
21

. (22)

Exercise 5.3. Find the cosine similarity for 𝒂 =


−1
4

2

 and 𝒃 =


3

0

−2

 .
Answer.

⟨𝒂, 𝒃⟩ = −7 (from Eq. (18)), (23)

∥𝒂∥2 =
√
(−1)2 + 42 + 22 =

√
1 + 16 + 4 =

√
21, (24)

∥𝒃∥2 =
√
32 + 02 + (−2)2 =

√
9 + 0 + 4 =

√
13, (25)

cos(𝒂, 𝒃) = −7
√
21

√
13

=
−7

√
273

. (26)

6 Summary

In this lecture, we learned the following:

• Assuming a one-hot vector input, when there is a fully-connected layer where the
weights are independent for each edge connecting the set of input nodes to another
set of nodes, this part is called an embedding layer. An embedding layer is equivalent
to a linear map by a matrix of weight parameters. When the input is e𝑖, the input to the
next layer becomes the 𝑖-th column vector 𝒘𝑖 of the weight matrix (Equation (7)).

• An embedding layer effectively converts each token 𝑖 into a real-valued vector 𝒘𝑖 com-
posed of weight parameters. The target vector 𝒘𝑖 is called the representation (em-
bedding) of token 𝑖.

• To capture the relationships between embeddings, we strictly defined Euclidean dis-
tance, inner product, and cosine similarity (Equations (9)–(11)) and showed their
relationship (Equation (12)) and geometry (Figure 3).
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