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Introduction



1.1 Review of the Previous Lecture

In the previous lecture, we focused on the token generator.
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1.1 Review of the Previous Lecture

In the previous lecture, we focused on the token generator.

We learned about sampling, which maps the continuous output of a neural
network (like a probability distribution for the next token) to a discrete object in
natural language (a specific token).

In this lecture, we reverse the perspective.

We will make explicit the fact that when using a neural network as the core of a
token generator, it implicitly converts discrete objects (tokens) into
continuous objects (real-valued vectors).

The component responsible for this is the embedding layer.
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1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

» Explain what an embedding layer does.
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1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

» Explain what an embedding layer does.

 Calculate the distances and similarities (Euclidean distance, standard
inner product, cosine similarity) between token representations (vectors)
obtained through embedding.
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Preliminaries: Mathematical
Notations



2. Preliminaries: Mathematical Notations

Set & Function: Vector: Denoted by v.
» Sets: A e A column of numbers, v € R™.
* Membership: z € A  ¢-th element is v;.
* Integer range: [1,k]z =={1,...,k} « Standard inner product:
* Real numbers: R, R, R>q (u,v) =u'w

L]

Function: f: X —» Y
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2. Preliminaries: Mathematical Notations

Sequence: Denoted by a = (aj, as,...). Tensor: Denoted by A.
» Simply a multi-dimensional array.
* Afunctiona : [1,n]z — A. - Vector — 1st-order, Matrix —
* Length is denoted by |a|. 2nd-order.

Matrix: Denoted by A.
* m X n matrix: A € R"™",

* (i,4)-th element is a; ;.
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One-Hot Encoding



3.1 Motivation

The appropriate distance relationships between tokens in natural language
are not known in advance.
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3.1 Motivation

The appropriate distance relationships between tokens in natural language
are not known in advance.

Therefore, to treat all tokens symmetrically (equally), we use the simplest and
most neutral representation, the one-hot vector.
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3.1 Motivation

Definition (One-Hot Encoding)
Consider a finite set V = {1, ..., di,} with a vocabulary size of di, € Z~,. For
i € V, the one-hot vector e; € {0, 1}9~ is defined as:

N L (j=1) . .
(e:); {0 (j + (J € [1,din]z). (1)
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3.1 Motivation

Remark
For any i  j, we have |le; — e;|l2 = V2.
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3.1 Motivation

Remark
For any i  j, we have |le; — e;||2 = V2. This expresses neutrality (lack of prior
assumptions) by ensuring that the distance between all pairs of tokens is

equal.
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Mapping to the Next Layer and the
Emergence of Embedding



4.1 Symmetry and Fully-Connected Layer

When the input is one-hot, we have no
choice but to treat each input node
equally. The natural connection to the
next set of nodes is a fully-connected
layer.
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4.1 Symmetry and Fully-Connected Layer

When the input is one-hot, we have no
choice but to treat each input node
equally. The natural connection to the
next set of nodes is a fully-connected
layer.

This part of the network is called an
embedding layer.

Figure 1: A fully-connected layer. 10/39



4.2 Matrix Representation and Equivalence to Linear Regression

A fully-connected layer is a linear map and can be written using a matrix
W E Rdelnb7 din :
z=Wax (xeRhi zeRm) (2)
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4.3 Active Edges for a One-Hot Input

When the input is a one-hot vector,
x = e;, something interesting happens.
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4.3 Active Edges for a One-Hot Input

When the input is a one-hot vector,

x = e;, something interesting happens.
The multiplication W e; simply selects
the i-th column of the matrix W.

We;, = w; (3)

(where w; is the i-th column of W).

Figure 2: Active edges for input e3. {539



4.4 Equivalent Understanding of Embedding

This means:

+ "Feeding a one-hot vector ¢; into the first fully-connected layer"...
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4.4 Equivalent Understanding of Embedding

This means:

+ "Feeding a one-hot vector ¢; into the first fully-connected layer"...
...Is equivalent to...

+ "Directly looking up the column vector w; in the weight matrix".

The column vector w; is a learnable parameter vector that represents token i.
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4.4 Equivalent Understanding of Embedding

Definition (Embedding)
The map defined by each column w; of the matrix W & R%mb; din |

viie{l,... din} — w; € Rbemd (4)

is called an embedding or embedding representation [1,2, 3].
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4.4 Equivalent Understanding of Embedding

Remark
It is customary to call w; the representation of the i-th token or the embedding
of the i-th token.
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4.4 Equivalent Understanding of Embedding

Remark
It is customary to call w; the representation of the i-th token or the embedding
of the i-th token.

Mathematically, an "embedding" is an injective map that preserves structure.

This name is used with the expectation that the relationships between tokens will
be reflected in the relationships between their vector representations in the new
space.
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4.5 Vocabulary Extension (Adding Columns)

How do we add new tokens to our vocabulary?
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4.5 Vocabulary Extension (Adding Columns)

How do we add new tokens to our vocabulary?

* We increase the dimension of the one-hot vectors (i.e., increase d;y,).
* In the matrix representation, we simply add new column vectors to W.

* Itis possible to train only the new columns, or fine-tune the entire matrix.

16/39



Distances and Similarities in the
Embedding Space



5. Distances and Similarities in the Embedding Space
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5. Distances and Similarities in the Embedding Space

If the embedding reflects semantic information, calculating the relationships
between vectors can have practical applications [2, 1].

17/39



5. Distances and Similarities in the Embedding Space

If the embedding reflects semantic information, calculating the relationships
between vectors can have practical applications [2, 1].

Here, we will strictly define the most fundamental measures.
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5. Distances and Similarities in the Embedding Space

Definition (Euclidean Distance)
For u,v € R%nmv, the Euclidean distance dr(u,v) is defined as:

i, ) = — vz = /(w — v)T (u —v). (5)
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5. Distances and Similarities in the Embedding Space

Definition (Euclidean Distance)
For u,v € R%nmv, the Euclidean distance dr(u,v) is defined as:

i, ) = — vz = /(w — v)T (u —v). (5)

The smaller the distance, the more similar the concepts.
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5. Distances and Similarities in the Embedding Space

Definition (Standard Inner Product)
For u,v € Ré%mv, the Standard Inner Product (u, v) is defined as:

demb

(w,v) =u'v = Z UL V- (6)
k=1

19/39



5. Distances and Similarities in the Embedding Space

Definition (Standard Inner Product)
For u,v € Ré%mv, the Standard Inner Product (u, v) is defined as:

demb

(w,v) =u'v = Z UL V- (6)
k=1

The larger the inner product, the more similar the concepts. The Transformer
architecture [4] uses this measure extensively.
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5. Distances and Similarities in the Embedding Space

Definition (Cosine Similarity)
For u,v € R%mv \ {0}, the cosine similarity cos(u, v) is defined as:

(o)
05 %) = Tul ol )
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5. Distances and Similarities in the Embedding Space

Definition (Cosine Similarity)
For u,v € R%mv \ {0}, the cosine similarity cos(u, v) is defined as:

(o)
05 %) = Tul ol )

This is the cosine of the angle between the two vectors. The larger the similarity
(closer to 1), the more similar the concepts.
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5. Distances and Similarities in the Embedding Space

The following identity holds:

le = ol3 = [[ull3 + [[v]|3 - 2 (u,v) (8)
= [lull3 + [lv]13

= 2||ullz [[v]l2 cos(u, v)

v

\

hner product (u/A)

tlates to projgCtion
Yu — vl
\
\

—_ —

\

u

T

Figure 3: Geometry of measures.
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5.1 Examples and Exercises

Example (Euclidean Distance)

2 1
Foru= |—1| andv = | 2 |, find the Euclidean distance.
3 -1
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5.1 Examples and Exercises

Step 1: Calculate the difference vector

2—-1 1
u—v=|-1-2|=[-3 9)
3—(—1) 4
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5.1 Examples and Exercises

Step 2: Calculate the L2 norm of the difference

lu — |z = V12 + (=3)2 + 42 (10)
:\/1+9+1 = V/26. (11)

The Euclidean distance is v/26.
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5.1 Examples and Exercises

Exercise

Find the Euclidean distance dg(a,b)fora= | 4 | andb= | 0
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5.1 Examples and Exercises

Answer
The difference vector is:

~1-3 —4
a-b=| 4-0 | =4 (12)
2 — (—2) 4
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5.1 Examples and Exercises

Answer
The difference vector is:

~1-3 —4
a-b=| 4-0 | =4 (12)
2 — (—2) 4

The Euclidean distance is:

lla —blla = v/(—4)2 + 42 + 42 = \/16 + 16 + 16 = V48 = 41/3. (13)
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5.1 Examples and Exercises

Example (Inner Product)

2 1
Foru= |-1| andv = | 2 |, find the inner product.
3 —1
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5.1 Examples and Exercises

(u,v) =21+ (=1)-2+3-(=1) (14)
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5.1 Examples and Exercises

(u,0) =21+ (=1)-2+3- (=1) (14)

=2-2-3=-3. (15)

The inner product is —3.
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5.1 Examples and Exercises

Exercise

Find the inner product (a,b) fora= | 4 | andb= | 0
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5.1 Examples and Exercises

Answer

(a,b) = (=1)-3+4-0+2-(-2) (16)
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5.1 Examples and Exercises

Answer

(a,b) = (=1)-3+4-0+2-(-2) (16)

=-3+0-4=-T7. (17)
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5.1 Examples and Exercises

Example (Cosine Similarity)

2 1
Foru= |-1| andv = | 2 |, find the cosine similarity.
3 =ll
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5.1 Examples and Exercises

Step 1: Reuse the inner product

(u,v) = =3 (from previous example) (18)
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5.1 Examples and Exercises

Step 2: Calculate the norms

lulla = v22+ (-1)2+ 32 =vV4+1+9=14 (19)
H'v||2:\/12+22 (—1)2:\/1+4+1=J6 (20)
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5.1 Examples and Exercises

Step 3: Divide inner product by product of norms

-3 -3 -3
S VIdVE VB4 221

(21)

cos(u, v)
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5.1 Examples and Exercises

Exercise

Find the cosine similarityfora= | 4 | andb= | 0
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5.1 Examples and Exercises

Answer

(a,b) = =7 (from previous exercise) (22)
lallz=+v(-1)2+42+22 = V1 +16+4 = V21 (23)
b2 =v/324+ 024+ (—2)2=v9+0+4=113 (24)
cos(a,b) = il il (25)

V2IVI3 V273
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Summary




Let’s summarize the key takeaways from today’s lecture.

+ An embedding layer is a fully-connected layer that takes a one-hot vector as
input. This is equivalent to a lookup operation, where the i-th token is mapped
to the i-th column vector w; of the layer’s weight matrix.
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Let’s summarize the key takeaways from today’s lecture.

+ An embedding layer is a fully-connected layer that takes a one-hot vector as
input. This is equivalent to a lookup operation, where the i-th token is mapped
to the i-th column vector w; of the layer’s weight matrix.

» This vector w; is called the representation or embedding of token i. If’'s a
dense, continuous vector in a lower-dimensional space.

» We defined three key measures to quantify relationships between
embeddings: Euclidean distance, standard inner product, and cosine
similarity. These allow us to capture the notion of "similarity" in the
embedding space.
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