Al Applications Lecture 7

Embedding Layer and Distances/Similarities

SUZUKI, Atsushi Jing WANG

Outline

Introduction

Preliminaries: Mathematical Notations

One-Hot Encoding

Mapping to the Next Layer and the Emergence of Embedding

Distances and Similarities in the Embedding Space

Summary

Introduction

In the previous lecture, we focused on the ${\bf token\ generator}.$

In the previous lecture, we focused on the **token generator**.

We learned about **sampling**, which maps the **continuous output of a neural network** (like a probability distribution for the next token) to a **discrete object in natural language** (a specific token).

In the previous lecture, we focused on the **token generator**.

We learned about **sampling**, which maps the **continuous output of a neural network** (like a probability distribution for the next token) to a **discrete object in natural language** (a specific token).

In this lecture, we reverse the perspective.

In the previous lecture, we focused on the **token generator**.

We learned about **sampling**, which maps the **continuous output of a neural network** (like a probability distribution for the next token) to a **discrete object in natural language** (a specific token).

In this lecture, we reverse the perspective.

We will make explicit the fact that when using a neural network as the core of a token generator, it implicitly converts discrete objects (tokens) into continuous objects (real-valued vectors).

In the previous lecture, we focused on the **token generator**.

We learned about **sampling**, which maps the **continuous output of a neural network** (like a probability distribution for the next token) to a **discrete object in natural language** (a specific token).

In this lecture, we reverse the perspective.

We will make explicit the fact that when using a neural network as the core of a token generator, it implicitly converts discrete objects (tokens) into continuous objects (real-valued vectors).

The component responsible for this is the **embedding layer**.

1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

• Explain what an embedding layer does.

1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

- Explain what an embedding layer does.
- Calculate the distances and similarities (Euclidean distance, standard inner product, cosine similarity) between token representations (vectors) obtained through embedding.

Preliminaries: Mathematical

Notations

2. Preliminaries: Mathematical Notations

Set & Function:

- Sets: A
- Membership: $x \in \mathcal{A}$
- Integer range: $[1, k]_{\mathbb{Z}} := \{1, \dots, k\}$
- Real numbers: $\mathbb{R}, \mathbb{R}_{>0}, \mathbb{R}_{\geq 0}$
- Function: $f: \mathcal{X} \to \mathcal{Y}$

Vector: Denoted by v.

- A column of numbers, $v \in \mathbb{R}^n$.
- *i*-th element is v_i .
- Standard inner product: $\langle oldsymbol{u}, oldsymbol{v}
 angle = oldsymbol{u}^{ op} oldsymbol{v}$

2. Preliminaries: Mathematical Notations

Sequence: Denoted by $a = (a_1, a_2, \dots)$.

- A function $a:[1,n]_{\mathbb{Z}}\to\mathcal{A}$.
- Length is denoted by |a|.

Matrix: Denoted by *A*.

- $m \times n$ matrix: $\mathbf{A} \in \mathbb{R}^{m,n}$.
- (i, j)-th element is $a_{i,j}$.

Tensor: Denoted by \underline{A} .

- Simply a multi-dimensional array.
- Vector \rightarrow 1st-order, Matrix \rightarrow 2nd-order.

One-Hot Encoding

The appropriate distance relationships between tokens in natural language are not known in advance.

The **appropriate distance relationships between tokens** in natural language are not known in advance.

Therefore, to **treat all tokens symmetrically (equally)**, we use the simplest and most neutral representation, the **one-hot vector**.

Definition (One-Hot Encoding)

Consider a finite set $\mathcal{V} = \{1, \dots, d_{\text{in}}\}$ with a vocabulary size of $d_{\text{in}} \in \mathbb{Z}_{>0}$. For $i \in \mathcal{V}$, the one-hot vector $\mathbf{e}_i \in \{0, 1\}^{d_{\text{in}}}$ is defined as:

$$(e_i)_j := \begin{cases} 1 & (j=i) \\ 0 & (j \neq i) \end{cases} \quad (j \in [1, d_{\text{in}}]_{\mathbb{Z}}). \tag{1}$$

Remark

For any $i \neq j$, we have $\|\mathbf{e}_i - \mathbf{e}_j\|_2 = \sqrt{2}$.

Remark

For any $i \neq j$, we have $\|\mathbf{e}_i - \mathbf{e}_j\|_2 = \sqrt{2}$. This expresses neutrality (lack of prior assumptions) by ensuring that the **distance between all pairs of tokens is equal**.

Mapping to the Next Layer and the

Emergence of Embedding

4.1 Symmetry and Fully-Connected Layer

When the **input is one-hot**, we have no choice but to treat **each input node equally**. The natural connection to the next set of nodes is a **fully-connected** layer.

4.1 Symmetry and Fully-Connected Layer

When the **input is one-hot**, we have no choice but to treat **each input node equally**. The natural connection to the next set of nodes is a **fully-connected** layer.

This part of the network is called an **embedding layer**.

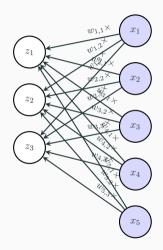


Figure 1: A fully-connected layer.

4.2 Matrix Representation and Equivalence to Linear Regression

A fully-connected layer is a **linear map** and can be written using a matrix $m{W} \in \mathbb{R}^{d_{\mathrm{emb}},\,d_{\mathrm{in}}}$:

$$oldsymbol{z} \coloneqq oldsymbol{W} oldsymbol{x} \quad (oldsymbol{x} \in \mathbb{R}^{d_{\mathrm{in}}}, \ oldsymbol{z} \in \mathbb{R}^{d_{\mathrm{emb}}}).$$

4.3 Active Edges for a One-Hot Input

When the input is a one-hot vector, $x = e_i$, something interesting happens.

4.3 Active Edges for a One-Hot Input

When the input is a one-hot vector, $\boldsymbol{x}=\mathbf{e}_i$, something interesting happens. The multiplication $\boldsymbol{W}\,\mathbf{e}_i$ simply selects the i-th column of the matrix \boldsymbol{W} .

$$\boldsymbol{W} \, \mathbf{e}_i = \boldsymbol{w}_i \tag{3}$$

(where w_i is the i-th column of W).

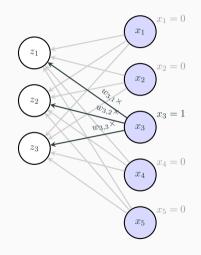


Figure 2: Active edges for input e_3 .

This means:

- "Feeding a one-hot vector \mathbf{e}_i into the first fully-connected layer"...

This means:

• "Feeding a one-hot vector \mathbf{e}_i into the first fully-connected layer"...

...is **equivalent** to...

• "Directly looking up the column vector $oldsymbol{w}_i$ in the weight matrix".

This means:

• "Feeding a one-hot vector \mathbf{e}_i into the first fully-connected layer"...

...is **equivalent** to...

• "Directly looking up the column vector $oldsymbol{w}_i$ in the weight matrix".

The column vector w_i is a **learnable parameter** vector that represents token i.

Definition (Embedding)

The map defined by each column $m{w}_i$ of the matrix $m{W} \in \mathbb{R}^{d_{\mathrm{emb}},\,d_{\mathrm{in}}},$

$$\iota: i \in \{1, \dots, d_{\mathrm{in}}\} \mapsto \boldsymbol{w}_i \in \mathbb{R}^{d_{\mathrm{emb}}}$$
 (4)

is called an **embedding** or **embedding representation** [1,2,3].

Remark

It is customary to call w_i the **representation** of the *i*-th token or the **embedding** of the *i*-th token.

Remark

It is customary to call w_i the **representation** of the i-th token or the **embedding** of the i-th token.

Mathematically, an "embedding" is an **injective map** that preserves structure.

Remark

It is customary to call w_i the **representation** of the i-th token or the **embedding** of the i-th token.

Mathematically, an "embedding" is an **injective map** that preserves structure.

This name is used with the expectation that the relationships between tokens will be **reflected** in the relationships between their vector representations in the new space.

How do we add new tokens to our vocabulary?

How do we add new tokens to our vocabulary?

• We increase the dimension of the one-hot vectors (i.e., increase $d_{\rm in}$).

How do we add new tokens to our vocabulary?

- We increase the dimension of the one-hot vectors (i.e., increase $d_{\rm in}$).
- In the matrix representation, we simply add new column vectors to W.

How do we add new tokens to our vocabulary?

- We increase the dimension of the one-hot vectors (i.e., increase $d_{\rm in}$).
- In the matrix representation, we simply add new column vectors to W.
- It is possible to **train only the new columns**, or fine-tune the entire matrix.

Distances and Similarities in the

Embedding Space

If the embedding reflects semantic information, calculating the **relationships between vectors** can have practical applications [2, 1].

If the embedding reflects semantic information, calculating the **relationships between vectors** can have practical applications [2, 1].

Here, we will strictly define the most fundamental measures.

Definition (Euclidean Distance)

For $u, v \in \mathbb{R}^{d_{\mathrm{emb}}}$, the **Euclidean distance** $d_{\mathrm{E}}(u, v)$ is defined as:

$$d_{\mathrm{E}}(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \|\boldsymbol{u} - \boldsymbol{v}\|_{2} = \sqrt{(\boldsymbol{u} - \boldsymbol{v})^{\top}(\boldsymbol{u} - \boldsymbol{v})}.$$
 (5)

Definition (Euclidean Distance)

For $m{u}, m{v} \in \mathbb{R}^{d_{\mathrm{emb}}}$, the **Euclidean distance** $d_{\mathrm{E}}(m{u}, m{v})$ is defined as:

$$d_{\mathrm{E}}(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \|\boldsymbol{u} - \boldsymbol{v}\|_{2} = \sqrt{(\boldsymbol{u} - \boldsymbol{v})^{\top}(\boldsymbol{u} - \boldsymbol{v})}.$$
 (5)

The **smaller** the distance, the more similar the concepts.

Definition (Standard Inner Product)

For $u, v \in \mathbb{R}^{d_{\mathrm{emb}}}$, the **Standard Inner Product** $\langle u, v \rangle$ is defined as:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle \coloneqq \boldsymbol{u}^{\top} \boldsymbol{v} = \sum_{k=1}^{d_{\text{emb}}} u_k v_k.$$
 (6)

Definition (Standard Inner Product)

For $u, v \in \mathbb{R}^{d_{\mathrm{emb}}}$, the **Standard Inner Product** $\langle u, v \rangle$ is defined as:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle \coloneqq \boldsymbol{u}^{\top} \boldsymbol{v} = \sum_{k=1}^{d_{\mathrm{emb}}} u_k v_k.$$
 (6)

The **larger** the inner product, the more similar the concepts. The Transformer architecture [4] uses this measure extensively.

Definition (Cosine Similarity)

For $u, v \in \mathbb{R}^{d_{\mathrm{emb}}} \setminus \{\mathbf{0}\}$, the cosine similarity $\cos(u, v)$ is defined as:

$$\cos(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\|_2 \|\boldsymbol{v}\|_2}.$$
 (7)

Definition (Cosine Similarity)

For $u, v \in \mathbb{R}^{d_{\text{emb}}} \setminus \{\mathbf{0}\}$, the cosine similarity $\cos(u, v)$ is defined as:

$$\cos(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\|_2 \|\boldsymbol{v}\|_2}.$$
 (7)

This is the cosine of the angle between the two vectors. The **larger** the similarity (closer to 1), the more similar the concepts.

The following identity holds:

$$\|\boldsymbol{u} - \boldsymbol{v}\|_{2}^{2} = \|\boldsymbol{u}\|_{2}^{2} + \|\boldsymbol{v}\|_{2}^{2} - 2\langle \boldsymbol{u}, \boldsymbol{v} \rangle \quad (8)$$

$$= \|\boldsymbol{u}\|_{2}^{2} + \|\boldsymbol{v}\|_{2}^{2}$$

$$- 2\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}\cos(\boldsymbol{u}, \boldsymbol{v})$$

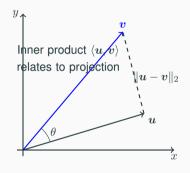


Figure 3: Geometry of measures.

Example (Euclidean Distance)

For
$$u = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, find the Euclidean distance.

Step 1: Calculate the difference vector

$$\boldsymbol{u} - \boldsymbol{v} = \begin{bmatrix} 2 - 1 \\ -1 - 2 \\ 3 - (-1) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$

(9)

Step 2: Calculate the L2 norm of the difference

$$\|\boldsymbol{u} - \boldsymbol{v}\|_2 = \sqrt{1^2 + (-3)^2 + 4^2}$$
 (10)

$$=\sqrt{1+9+16}=\sqrt{26}. (11)$$

The Euclidean distance is $\sqrt{26}$.

Exercise

Find the Euclidean distance
$$d_{\rm E}({\pmb a},{\pmb b})$$
 for ${\pmb a}=\begin{bmatrix} -1\\4\\2 \end{bmatrix}$ and ${\pmb b}=\begin{bmatrix} 3\\0\\-2 \end{bmatrix}$.

Answer

The difference vector is:

$$\mathbf{a} - \mathbf{b} = \begin{bmatrix} -1 - 3 \\ 4 - 0 \\ 2 - (-2) \end{bmatrix} = \begin{bmatrix} -4 \\ 4 \\ 4 \end{bmatrix}$$
 (12)

Answer

The difference vector is:

$$\mathbf{a} - \mathbf{b} = \begin{bmatrix} -1 - 3 \\ 4 - 0 \\ 2 - (-2) \end{bmatrix} = \begin{bmatrix} -4 \\ 4 \\ 4 \end{bmatrix}$$
 (12)

The Euclidean distance is:

$$\|\boldsymbol{a} - \boldsymbol{b}\|_2 = \sqrt{(-4)^2 + 4^2 + 4^2} = \sqrt{16 + 16 + 16} = \sqrt{48} = 4\sqrt{3}.$$
 (13)

Example (Inner Product)

For
$$u = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, find the inner product.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 2 \cdot 1 + (-1) \cdot 2 + 3 \cdot (-1)$$

(14)

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 2 \cdot 1 + (-1) \cdot 2 + 3 \cdot (-1)$$

$$=2-2-3=-3.$$

The inner product is -3.

(14)

(15)

Exercise

Find the inner product
$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle$$
 for $\boldsymbol{a} = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$.

Answer

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = (-1) \cdot 3 + 4 \cdot 0 + 2 \cdot (-2)$$

(16)

Answer

$$\langle a, b \rangle = (-1) \cdot 3 + 4 \cdot 0 + 2 \cdot (-2)$$
 (16)

$$= -3 + 0 - 4 = -7. (17)$$

Example (Cosine Similarity)

For
$$u = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, find the cosine similarity.

Step 1: Reuse the inner product

$$\langle u, v \rangle = -3$$
 (from previous example) (18)

Step 2: Calculate the norms

$$\|\mathbf{u}\|_2 = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$$
 (19)

$$\|\mathbf{v}\|_2 = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$$
 (20)

Step 3: Divide inner product by product of norms

$$\cos(u, v) = \frac{-3}{\sqrt{14}\sqrt{6}} = \frac{-3}{\sqrt{84}} = \frac{-3}{2\sqrt{21}}.$$
 (21)

Exercise

Find the cosine similarity for
$$a = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$.

Answer

$$\langle a, b \rangle = -7$$
 (from previous exercise) (22)

$$\|\boldsymbol{a}\|_2 = \sqrt{(-1)^2 + 4^2 + 2^2} = \sqrt{1 + 16 + 4} = \sqrt{21}$$
 (23)

$$\|\boldsymbol{b}\|_2 = \sqrt{3^2 + 0^2 + (-2)^2} = \sqrt{9 + 0 + 4} = \sqrt{13}$$
 (24)

$$\cos(\mathbf{a}, \mathbf{b}) = \frac{-7}{\sqrt{21}\sqrt{13}} = \frac{-7}{\sqrt{273}}.$$
 (25)

Summary

6. Summary

Let's summarize the key takeaways from today's lecture.

• An **embedding layer** is a fully-connected layer that takes a one-hot vector as input. This is equivalent to a lookup operation, where the i-th token is mapped to the i-th column vector w_i of the layer's weight matrix.

6. Summary

Let's summarize the key takeaways from today's lecture.

- An **embedding layer** is a fully-connected layer that takes a one-hot vector as input. This is equivalent to a lookup operation, where the i-th token is mapped to the i-th column vector w_i of the layer's weight matrix.
- This vector w_i is called the **representation** or **embedding** of token i. It's a dense, continuous vector in a lower-dimensional space.

6. Summary

Let's summarize the key takeaways from today's lecture.

- An **embedding layer** is a fully-connected layer that takes a one-hot vector as input. This is equivalent to a lookup operation, where the i-th token is mapped to the i-th column vector w_i of the layer's weight matrix.
- This vector w_i is called the **representation** or **embedding** of token i. It's a dense, continuous vector in a lower-dimensional space.
- We defined three key measures to quantify relationships between embeddings: Euclidean distance, standard inner product, and cosine similarity. These allow us to capture the notion of "similarity" in the embedding space.

References i

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning.

MIT Press, Cambridge, MA, 2016.

- [2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
 Efficient estimation of word representations in vector space.
 In Proceedings of Workshop at ICLR 2013, 2013.
- [3] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
 Glove: Global vectors for word representation.
 In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

References ii

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin.

Attention is all you need.

In Proceedings of NeurIPS 2017, 2017.