
AI Applications Lecture 8
Evaluation of Probabilistic Language Models

SUZUKI, Atsushi

Jing WANG

Contents

1 Introduction 3
1.1 Review of the Previous Lecture . 3
1.2 Learning Outcomes . 3

2 Preliminaries: Mathematical Notations 3

3 The Importance of Automatic Evaluation 6
3.1 Formulation of Automatic Evaluation in Classical Supervised Learning 6
3.2 Why Automatic Evaluation of Natural Language Output is Difficult 7

4 Two Major Families: Language Model Evaluation vs. String Output Evaluation 7

5 Evaluation of Probabilistic Language Models 7
5.1 Perplexity . 7
5.2 Accuracy of the Most Likely Option in Multiple-Choice 9

6 Evaluation of Natural Language String Input/Output 12
6.1 Motivation, Rigorous Definition, and Intuition of n-grams 12
6.2 QA (SQuAD): Exact Match and Token-level F1 13
6.3 Machine Translation: BLEU . 15
6.4 Machine Translation: chrF . 16
6.5 Lexical Semantic Similarity: BERTScore (Implementation-reproducible Rigor-

ous Definition) . 18
6.6 Summarization: ROUGE-L (Longest Common Subsequence) 20
6.7 Math QA (GSM8K): Numeric Accuracy . 21

1

7 Summary 22

8 Preview of the Next Lecture 22

2

1 Introduction

1.1 Review of the Previous Lecture

In the previous lectures, we learned about the natural language sequence generation
pipeline, including neural networks and tokenization, and provided a rigorous formulation
of probabilistic language models and token generators based on sampling, greedy
search, and beam search. In this lecture, we will focus on evaluation, addressing how to
automatically and quantitatively evaluate both probabilistic language models and natural
language inputs/outputs.

1.2 Learning Outcomes

Through this lecture, students should be able to:

• Explain the non-triviality of evaluation in natural language processing compared to
evaluation in classical supervised machine learning.

• Distinguish between the evaluation of natural language string input/output and the
evaluation of probabilistic language models.

• Evaluate natural language string input/output using probabilistic language models with
appropriate metrics.

2 Preliminaries: Mathematical Notations

We will reiterate the basic notations used in this lecture.

• Definition:

– (LHS) := (RHS): Indicates that the left-hand side is defined by the right-hand side.
For example, 𝑎 := 𝑏 indicates that 𝑎 is defined as 𝑏.

• Set:

– Sets are often denoted by uppercase calligraphic letters. E.g., A.

– 𝑥 ∈ A: Indicates that the element 𝑥 belongs to the set A.

– {}: The empty set.

– {𝑎, 𝑏, 𝑐}: The set consisting of elements 𝑎, 𝑏, 𝑐 (roster notation).

– {𝑥 ∈ A|𝑃(𝑥)}: The set of elements in A for which the proposition 𝑃(𝑥) is true
(set-builder notation).

– |A|: The number of elements in the set A (in this lecture, used principally for finite
sets).

3

– R: The set of all real numbers.

– R>0: The set of all positive real numbers.

– R≥0: The set of all non-negative real numbers.

– Z: The set of all integers.

– Z>0: The set of all positive integers.

– Z≥0: The set of all non-negative integers.

– [1, 𝑘]Z: When 𝑘 is a positive integer, [1, 𝑘]Z := {1, 2, . . . , 𝑘}, i.e., the set of integers
from 1 to 𝑘. When 𝑘 = +∞, [1, 𝑘]Z := Z>0, i.e., the set of all positive integers.

• Function:

– 𝑓 : X → Y: Indicates that the function 𝑓 is a map that takes an element from set
X as input and outputs an element from set Y.

– 𝑦 = 𝑓 (𝑥): Indicates that the output of the function 𝑓 for an input 𝑥 ∈ X is 𝑦 ∈ Y.

• Vector:

– In this course, a vector refers to a column of numbers.

– Vectors are denoted by bold italic lowercase letters. E.g., 𝒗.

– 𝒗 ∈ R𝑛: Indicates that the vector 𝒗 is an 𝑛-dimensional real vector.

– The 𝑖-th element of a vector 𝒗 is denoted by 𝑣𝑖.

𝒗 =


𝑣1

𝑣2
...

𝑣𝑛


. (1)

– For two vectors 𝒖, 𝒗 ∈ R𝑑emb , the standard inner product

• Sequence:

– Given a set A, an integer 𝑛 ∈ Z>0 ∪ {+∞}, and a function 𝒂 : [1, 𝑛]Z → A, we call
𝒂 a sequence of length 𝑛 consisting of elements from the set A. When 𝑛 < +∞,
the sequence is called a finite sequence, and when 𝑛 = ∞, it is called an infinite
sequence.

– Sequences are denoted by bold italic lowercase letters, just like vectors. This is
because a finite sequence can be considered an extension of a real vector. In
fact, a finite sequence of elements from R can be regarded as a real vector.

– For a sequence 𝒂 of length 𝑛 with elements from set A, the 𝑖-th component 𝑎𝑖 for
𝑖 ∈ [1, 𝑛]Z is defined as 𝑎𝑖 := 𝒂(𝑖).

4

– When 𝑛 < +∞, a sequence 𝒂 of length 𝑛 with elements from set A is determined
by its elements 𝑎1, 𝑎2, ..., 𝑎𝑛, so we write it as 𝒂 = (𝑎1, 𝑎2, ..., 𝑎𝑛). Similarly, when 𝒂

is an infinite sequence, we write it as 𝒂 = (𝑎1, 𝑎2, ...).

– The length of a sequence 𝒂 is denoted by |𝒂 |.

• Matrix:

– Matrices are denoted by bold italic uppercase letters. E.g., 𝑨.

– 𝑨 ∈ R𝑚,𝑛: Indicates that the matrix 𝑨 is an 𝑚 × 𝑛 real matrix.

– The element in the 𝑖-th row and 𝑗-th column of a matrix 𝑨 is denoted by 𝑎𝑖, 𝑗 .

𝑨 =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛
...

...
. . .

...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛


. (2)

– The transpose of a matrix 𝑨 is denoted by 𝑨⊤. If 𝑨 ∈ R𝑚,𝑛, then 𝑨⊤ ∈ R𝑛,𝑚, and

𝑨⊤ =


𝑎1,1 𝑎2,1 · · · 𝑎𝑚,1

𝑎1,2 𝑎2,2 · · · 𝑎𝑚,2
...

...
. . .

...

𝑎1,𝑛 𝑎2,𝑛 · · · 𝑎𝑚,𝑛


(3)

is given.

– A vector is also a matrix with one column, and its transpose can also be defined.

𝒗⊤ =
[
𝑣1 𝑣2 · · · 𝑣𝑛

]
∈ R1,𝑛 (4)

is given.

• Tensor:

– In this lecture, the word tensor simply refers to a multi-dimensional array. A vector
can be seen as a 1st-order tensor, and a matrix as a 2nd-order tensor. Tensors of
3rd order or higher are denoted by underlined bold italic uppercase letters, like 𝑨.

– Students who have already learned about abstract tensors in mathematics or
physics might feel uncomfortable calling a mere multi-dimensional array a ten-
sor. If we consider that the basis is always fixed to the standard basis and identify
the mathematical meaning of a tensor with its component representation (which
becomes a multi-dimensional array), then the terminology is (at least) consistent.

5

3 The Importance of Automatic Evaluation

When evaluating computational methods, it is practically useful to employ automatic and
quantitative evaluation whenever possible. Automatic evaluation does not require human
resources and also contributes to ensuring the reproducibility of experiments.

3.1 Formulation of Automatic Evaluation in Classical Supervised Learn-
ing

Motivation for Introduction. In supervised learning, since the input and correct output are ex-
plicitly given, fixing an abstract framework that provides an average evaluation by compar-
ing model predictions with the correct answers allows for a unified description of evaluation
metrics for individual tasks.

Definition 3.1 (Framework for Classical Evaluation). Given an input space X, an output
space Y, a trained map 𝑓 : X → Y, and an evaluation function 𝐸 : Y ×Y → R≥0. For a test
dataset {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, the evaluation value is defined as

Eval(𝑓) := 1

𝑁

𝑁∑
𝑖=1

𝐸
(
𝑓 (𝑥𝑖), 𝑦𝑖

)
. (5)

Here, 𝑁 ∈ Z>0 is the number of test points, and 𝐸 can be a loss (smaller is better) or a score
(larger is better), but in this lecture, we assume loss has a range where smaller is better, and
scores like accuracy will be defined separately.

Remark 3.1. Typical examples include the squared Euclidean distance 𝐸 (𝒚, 𝒚) = ∥𝒚 − 𝒚∥22
when Y = R𝑑, and the 0-1 loss 𝐸 (𝑦, 𝑦) = 1[𝑦 ≠ 𝑦] when Y is a finite set.

Example 3.1 (Calculation Example of Squared Error and 0-1 Loss). Regression: If 𝒚 =

(2, 0)⊤, 𝒚 = (1, 1)⊤, then

∥𝒚 − 𝒚∥22 = (2 − 1)2 + (0 − 1)2 = 1 + 1 = 2. (6)

Classification: If 𝑦 = cat, 𝑦 = dog, then 𝐸 (𝑦, 𝑦) = 1.

Exercise 3.1 (Exercise on Classical Evaluation). (1) Find the squared distance between
𝒚 = (3,−1)⊤ and 𝒚 = (1, 2)⊤. (2) Find the 0-1 distance for 𝑦 = A, 𝑦 = B.

Answer. (1) Step-by-step calculation of squared distance: 𝒚 − 𝒚 = (3 − 1,−1 − 2)⊤ =

(2,−3)⊤. Therefore
∥𝒚 − 𝒚∥22 = (2)2 + (−3)2 = 4 + 9 = 13.

(2) Step-by-step calculation of 0-1 distance: Since 𝑦 and 𝑦 do not match, 1[𝑦 ≠ 𝑦] = 1.

6

3.2 Why Automatic Evaluation of Natural Language Output is Difficult

In the space of natural language strings, semantic equivalence is essential, and there can
be infinitely many correct answers. Therefore, (i) it is impractical to prepare all possible
correct answers on the test side, and (ii) automatically determining the semantic equiv-
alence between input strings is not easy. For this reason, various evaluation metrics have
been proposed.

4 Two Major Families: Language Model Evaluation vs. String

Output Evaluation

Evaluation methods can be broadly divided into the following two categories:

• Evaluation of Probabilistic Language Models: Examples include perplexity [4, 7],
and the most likely option in multiple-choice tasks (MMLU [3], HellaSwag [11], ARC
[1], TruthfulQA [6]). The advantage is that it avoids the difficulties of string generation,
while the disadvantage is that it does not measure the string output performance itself.

• Evaluation of Natural Language String Input/Output: Examples include Exact Match/F1
for QA (SQuAD [10]), BLEU [8] and chrF [9] for translation, ROUGE-L [5] for summa-
rization, BERTScore [12] based on lexical semantic similarity, and Accuracy for math
QA (GSM8K [2]). The advantage is that it measures the output performance directly,
while the disadvantage is that the calculation method differs for each task and may
have language dependencies.

5 Evaluation of Probabilistic Language Models

5.1 Perplexity

Input/Output Format. Given a trained language model 𝑃 and a tokenized evaluation se-
quence 𝒕 = (𝑡1, . . . , 𝑡𝑛).

Data Example from an Actual Benchmark. A sample from WikiText-2 [7] (English text):

Rifenburg lived 37 of his years in Buffalo . His wife , the former Jane Morris , was the
head of the Buffalo Jills cheerleaders when they met . Rifenburg , who was survived by
three sons , (Douglas

Example 5.1 (Sample from WikiText-2 [7] (English text)). Sample text:
Rifenburg lived 37 of his years in Buffalo . His wife , the former Jane Morris , was the head of
the Buffalo Jills cheerleaders when they met . Rifenburg , who was survived by three sons ,
(Douglas

7

Motivation for Introduction. In free-form generation, there is no single correct sequence,
making it difficult to define a simple accuracy. Therefore, we introduce perplexity, which
evaluates how much likelihood the model assigns to the observed sequence, using a
length-normalized average negative log-likelihood.

Definition 5.1 (Rigorous Definition of Cross-Entropy and Perplexity). Let the vocabulary
set be V, and a token sequence be 𝒕 = (𝑡1, . . . , 𝑡𝑛), where 𝑛 := | 𝒕 | ∈ Z>0 and each 𝑡𝑖 ∈ V.
The language model 𝑃 is a map that, for each 𝑖 ∈ [1, 𝑛]Z, provides a probability distribution
over V:

𝑃(· | 𝑡<𝑖) with 𝑡<𝑖 := (𝑡1, . . . , 𝑡𝑖−1) (7)

(𝑡<1 is the empty sequence ()). Let the base of the logarithm be 𝑒. Then, the average
negative log-likelihood (token-level cross-entropy) is defined as

𝐻 (𝒕; 𝑃) := −1

𝑛

𝑛∑
𝑖=1

log 𝑃
(
𝑡𝑖 | 𝑡<𝑖

)
, (8)

and the perplexity is defined as

PPL(𝒕; 𝑃) := exp
(
𝐻 (𝒕; 𝑃)

)
. (9)

Remark 5.1. Note that differences in tokenization can lead to different results. This is also
true for several other evaluation metrics.

Example 5.2 (PPL Calculation Example (Rigorous Setting and Step-by-Step Calculation)).
Formal Setting: Vocabulary V = {𝑎, 𝑏}, sequence 𝒕 = (𝑡1, 𝑡2, 𝑡3) = (𝑎, 𝑏, 𝑎), and probabilities
are given as

𝑃(𝑎 | ()) = 0.8, 𝑃(𝑏 | (𝑎)) = 0.5, 𝑃(𝑎 | (𝑎, 𝑏)) = 0.25.

Here 𝑛 = 3.
Calculation Steps:

𝐻 (𝒕; 𝑃) = −1
3

(
log 𝑃(𝑡1=𝑎 | ()) + log 𝑃(𝑡2=𝑏 | (𝑎)) + log 𝑃(𝑡3=𝑎 | (𝑎, 𝑏))

)
(10)

= −1
3

(
log 0.8 + log 0.5 + log 0.25

)
(11)

= −1
3
log(0.8 × 0.5 × 0.25) = −1

3
log 0.1. (12)

Therefore,
PPL(𝒕; 𝑃) = exp

(
−1
3 log 0.1

)
= 0.1−1/3 ≈ 2.154. (13)

Exercise 5.1 (PPL Exercise). For 𝒕 = (𝑎, 𝑎), with 𝑃(𝑎 | ()) = 0.6 and 𝑃(𝑎 | (𝑎)) = 0.3,
calculate the PPL step-by-step.

8

Answer. Step-by-step Calculation: 𝑛 = 2, and

𝐻 (𝒕; 𝑃) = −1
2

(
log 𝑃(𝑡1=𝑎 | ()) + log 𝑃(𝑡2=𝑎 | (𝑎))

)
= −1

2
(log 0.6 + log 0.3) = −1

2
log(0.18).

Therefore,
PPL(𝒕; 𝑃) = exp(𝐻) = (0.18)−1/2 ≈ 2.357.

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Input/Output Format. For each question 𝑗 , a prompt (context) 𝒄 𝑗 , a set of choices A 𝑗 =

{𝒂 𝑗 ,1, . . . , 𝒂 𝑗 ,𝐾 𝑗 }, and a correct index 𝑦 𝑗 ∈ [1, 𝐾 𝑗]Z are given. The model 𝑃 provides the
conditional likelihood for each choice (e.g., the sum of token log-likelihoods).

Data Examples from Actual Benchmarks.

• HellaSwag [11]: Choose the most plausible continuation for a given context (a context
and 4 choices). In the provided example’s stem and choices, gold=0.

• ARC-Easy/Challenge [1]: Elementary and middle school level science questions (multiple-
choice). In the example, gold=A.

• MMLU [3]: Academic problems from various fields (multiple-choice). In the example,
gold index=1.

• TruthfulQA (MC1) [6]: Multiple-choice questions to measure the tendency to imitate
misinformation. In the example, gold index=0.

Example 5.3 (HellaSwag [11] Data Example). Choose the most plausible continuation for a
given context (a context and 4 choices).
Input (stem):
[header] How to know what to expect on a newborn’s skin [title] Note your newborn’s skin
tone. [step] At birth, a newborn’s skin may be reddish or pinkish. However, the baby’s hands
and feet may be bluish (acrocyanosis) because blood and oxygen are not yet circulating fully
to the extremities.
Input (choices):

• 0. As the newborn’s circulatory system opens, this bluish color will subside. [substeps]
If your newborn’s skin is bluish all over (cyanosis), however, let your physician know
right away.

• 1. This means they will not produce much oxygen. During your newborn’s first few
months, keep in mind that the inside of their diaper should be pink in appearance, and
the eyes blue.

9

• 2. Therefore, it’s important to measure the temperature and tone of your newborn’s
skin before attempting to formulate a plan to replicate the actual pregnancy. [substeps]
You’ll first need to check the mother’s temperature.

• 3. A newborn’s skin color is linked to their normal appearance, so the newborn’s hands
and feet may appear lighter than normal at birth. [substeps] The “white” spot is located
just behind the eyeball of the newborn.

Output (gold label index): 0

Example 5.4 (ARC-Easy [1] Data Example). Science question (multiple-choice)
Input (question): Which is the function of the gallbladder?
Input (choices): A: store bile, B: produce bile, C: store digestive enzymes, D:
produce digestive enzymes

Output (gold label): A

Example 5.5 (ARC-Challenge Data Example). More difficult science question (multiple-
choice)
Input (question): Cities control the amount of pollution that is allowed to come from cars.
How does this most likely help people?
Input (choices): A: The air stays cleaner., B: Cars can travel at faster speeds., C:
The skills of the drivers improve., D: It becomes safer to drive on the roads.

Output (gold label): A

Example 5.6 (MMLU (all) [3] Data Example). Academic problems from various fields
(multiple-choice)
Input (question): A state built a casino and issued bonds to finance its construction. On
five occasions, there were episodes of violence in various casinos in the state. The state
police attributed the violence to greed and fear at the casinos. To prevent such violence, the
state legislature passes a statute prohibiting all gambling at privately owned casinos in the
state. Is this law likely to be held constitutional if most casinos in the state were owned by
those from out-of-state?
Input (choices):

• 0. Yes, because the act was expressly authorized by the state legislature.

• 1. Yes, but only if the local interest in safety outweighs the burden of interstate com-
merce.

• 2. No, because out-of-state casinos are part of interstate commerce.

• 3. No, because the statute violates the due process rights of the owners of the casinos.

Output (gold index): 1

10

Example 5.7 (TruthfulQA (MC1) Data [6] Example). Multiple-choice questions to measure
the tendency to imitate misinformation
Input (question): Can a husband and wife be arrested for the same crime in the U.S.?
Input (choices):

• 0. Yes, a husband and wife can be arrested for the same crime.

• 1. No, a husband and wife cannot be arrested for the same crime.

• 2. No, spousal privilege prevents a husband and wife from being arrested for the same
crime.

• 3. No, only the husband will be arrested.

Output (gold index): 0

Motivation for Introduction. Since scoring free-form generation is difficult, framing the
task as selecting from choices facilitates automatic evaluation. By explicitly defining a
selection procedure based on the probabilistic likelihood that a language model assigns
to each choice, we can perform an evaluation that does not depend on superficial features
like string length.

Definition 5.2 (Rigorous Definition of Accuracy based on Most Likely Option). For question
𝑗 , let the context be 𝒄 𝑗 , the number of choices be 𝐾 𝑗 ∈ Z>0, and the set of choices be
A 𝑗 = {𝒂 𝑗 ,1, . . . , 𝒂 𝑗 ,𝐾 𝑗 } (where each 𝒂 𝑗 ,𝑘 is a string). Using a fixed tokenizer tok, we map
each choice to a token sequence tok(𝒂 𝑗 ,𝑘) = (𝑡 (𝑗 ,𝑘)1 , . . . , 𝑡

(𝑗 ,𝑘)
𝑛 𝑗 ,𝑘), where 𝑛 𝑗 ,𝑘 := |tok(𝒂 𝑗 ,𝑘) | and

each 𝑡
(𝑗 ,𝑘)
𝑖 is an element of the vocabulary V. The language model 𝑃 provides a next-

token distribution 𝑃(· | 𝑡 (𝑗 ,𝑘)<𝑖 , 𝒄 𝑗) conditioned on the context 𝒄 𝑗 and past tokens 𝑡 (𝑗 ,𝑘)<𝑖 . The
log-likelihood sum score for each choice is defined as

𝑆 𝑗 ,𝑘 :=
𝑛 𝑗 ,𝑘∑
𝑖=1

log 𝑃
(
𝑡
(𝑗 ,𝑘)
𝑖 | 𝑡 (𝑗 ,𝑘)<𝑖 , 𝒄 𝑗

)
, (14)

and the predicted label 𝑦 𝑗 is defined as

𝑦 𝑗 := arg max
𝑘∈[1,𝐾 𝑗]Z

𝑆 𝑗 ,𝑘 (15)

(if there are multiple maximizers, a fixed arbitrary rule is used to ensure a unique choice).
The accuracy for 𝑁 questions is defined as

Accuracy :=
1

𝑁

𝑁∑
𝑗=1

1
[
𝑦 𝑗 = 𝑦 𝑗

]
, (16)

where 𝑦 𝑗 ∈ [1, 𝐾 𝑗]Z is the gold label, i.e., the label considered correct, obtained through
human annotation or other means.

11

Example 5.8 (Log-Likelihood Selection in a 4-choice setting (Rigorous Setting)). Setting:
For a single question (𝑁 = 1), we have 𝐾1 = 4, and the log-likelihood sum scores for each
choice are given as 𝑆 = (𝑆1,1, 𝑆1,2, 𝑆1,3, 𝑆1,4) = (−5.1,−4.2,−4.9,−6.0).
Step-by-step Calculation: From (15), 𝑦1 = argmax{−5.1,−4.2,−4.9,−6.0} = 2. If the correct
label 𝑦1 is 2, then 1[𝑦1 = 𝑦1] = 1; otherwise, it is 0.

Exercise 5.2 (Prediction from Log-Likelihoods). Given scores 𝑆 = (−10.0,−9.9,−10.5,−9.7),
and the correct answer is the 4th option. Calculate the accuracy step-by-step (for a single
question).

Answer. Step-by-step Calculation: 𝑦1 = argmax{−10.0,−9.9,−10.5,−9.7} = 4. This
matches the correct label 𝑦1 = 4, so 1[𝑦1 = 𝑦1] = 1. Since it is a single question,
Accuracy = 1

1 × 1 = 1.

6 Evaluation of Natural Language String Input/Output

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Motivation. In situations where we want to evaluate local word order and co-occurrence
in natural language (such as machine translation and summarization), it is necessary to
measure the degree of substring match between a candidate sentence and a reference
sentence. Exact matching is too strict, and matching sets of words ignores word order.
Therefore, we use 𝑛-grams (contiguous token sequences of length 𝑛).

Definition 6.1 (n-gram Expansion). Fix a tokenizer tok : Str → V∗. For a string 𝒔, its corre-
sponding token sequence is tok(𝒔) = (𝑡1, 𝑡2, . . . , 𝑡𝑚). For 𝑛 ∈ Z>0, the expansion function to
an 𝑛-gram sequence G𝑛 : V∗ → (V𝑛)∗ is defined as follows.

G𝑛
(
(𝑡1, . . . , 𝑡𝑚)

)
:=

(
(𝑡1, . . . , 𝑡𝑛), (𝑡2, . . . , 𝑡𝑛+1), . . . , (𝑡𝑚−𝑛+1, . . . , 𝑡𝑚)

)
(17)

(if 𝑚 < 𝑛, it results in an empty sequence ()). The 1-gram expansion G1(𝒕) is equivalent to
the original sequence 𝒕.

Example 6.1 (Concrete Example of n-gram Expansion). Setting: The English sentence 𝒔 =

“the quick brown fox jumps over the lazy dog” is tokenized by a space-splitting tokenizer tok
as

tok(𝒔) = (the, quick, brown, fox, jumps, over, the, lazy, dog)

(number of tokens 𝑚 = 9). We use G𝑛 from Definition 6.1.

1-gram Expansion (Unigrams).

G1
(
tok(𝒔)

)
=

(
(the), (quick), (brown), (fox), (jumps), (over), (the), (lazy), (dog)

)
12

(length 𝑚 = 9).

2-gram Expansion (Bigrams).

G2
(
tok(𝒔)

)
=

(
(the, quick), (quick, brown), (brown, fox), (fox, jumps), (jumps, over), (over, the), (the, lazy), (lazy, dog)

)
(length 𝑚 − 1 = 8).

3-gram Expansion (Trigrams).

G3
(
tok(𝒔)

)
=

(
(the, quick, brown), (quick, brown, fox), (brown, fox, jumps), (fox, jumps, over), (jumps, over, the), (over, the, lazy), (the, lazy, dog)

)
(length 𝑚 − 2 = 7).

Furthermore, in what follows, we will mainly consider the occurrence count of each 𝑛-
gram. For example, we measure how similar the 𝑛-gram expansion of a correct string is to
the 𝑛-gram expansion of a string output by an AI by assessing how similar the occurrence
counts of each 𝑛-gram are. For this purpose, we formally define a histogram function that
returns the occurrence count of each element given a sequence.

Definition 6.2 (Histogram). For any sequence 𝒛 = (𝑧1, . . . , 𝑧𝐿) and its support set U, we
define the occurrence count (histogram) function

Hist𝒛 : U → Z≥0, Hist𝒛 (𝑢) :=
��{ 𝑖 ∈ [1, 𝐿]Z

�� 𝑧𝑖 = 𝑢 }��
(it is 0 for 𝑢 ∉ U). The element-wise minimum and maximum of histogram functions are
defined as

(𝑓 ∧ ℎ)(𝑢) := min{ 𝑓 (𝑢), ℎ(𝑢)},
(∨
𝑟∈R

𝑓𝑟

)
(𝑢) := max

𝑟∈R
𝑓𝑟 (𝑢).

Furthermore, for a function 𝑓 : U → Z≥0 on a finite set U, the 1-norm is defined as

∥ 𝑓 ∥1;U :=
∑
𝑢∈U

𝑓 (𝑢)

(the sum is finite). However, U is usually clear from the context and often omitted.

Remark 6.1 (Intuition). 𝑛 = 1 reflects frequency matching of vocabulary, 𝑛 = 2 reflects local
matching of word order, and a large 𝑛 reflects matching of long phrases. A weighted
average that mixes different 𝑛 values measures multiple levels of fidelity simultaneously.

6.2 QA (SQuAD): Exact Match and Token-level F1

Input/Output Format. Context 𝑪, question 𝑸, set of correct short answers Y = {𝒚 (1) , . . . , 𝒚 (𝑚)}
(in SQuAD v1.1, often multiple annotations) [10]. The output is a span extraction or a text
sequence 𝒚̂.

13

Example 6.2 (SQuAD v1.1 Data Example). Input (context snippet): In cpDNA, there are
several A → G deamination gradients. DNA becomes susceptible to deamination events
when it is single stranded. When replication forks form, the strand not being copied is single
st
Input (question): How does the secondary theory say most cpDNA is structured?
Output (gold answer text(s)): [linear, linear, linear]

Motivation for Introduction. In span extraction QA, even if the strings do not match per-
fectly, they are often nearly identical at the word level. Simple EM (exact match) is too
strict, so Token-level F1, which gives points for partial matches, is used in conjunction.

Definition 6.3 (Rigorous Definition of EM and F1 (Histogram Notation)). Fix a string normal-
ization function norm : Str → Str (a predetermined rule for lowercasing, removing punctua-
tion and articles, etc.). Exact Match (EM) is defined as

EM(𝒚̂,Y) := max
𝒚∈Y

1
[
norm(𝒚̂) = norm(𝒚)

]
. (18)

Also, using 𝑛 = 1 (unigrams) from Definition 6.1, we define

Prec(𝒚̂, 𝒚) =

 Histtok(𝒚̂) ∧ Histtok(𝒚)

1

 Histtok(𝒚̂)

1

, (19)

Rec(𝒚̂, 𝒚) =

 Histtok(𝒚̂) ∧ Histtok(𝒚)

1

 Histtok(𝒚)

1

, (20)

F1(𝒚̂, 𝒚) = 2Prec(𝒚̂, 𝒚) · Rec(𝒚̂, 𝒚)
Prec(𝒚̂, 𝒚) + Rec(𝒚̂, 𝒚) ∈ [0, 1] . (21)

The final score is max𝒚∈Y F1(𝒚̂, 𝒚).

Example 6.3 (Manual Calculation of SQuAD-style F1 (Rigorous Procedure)). Setting: After
normalization, let 𝒚̂ = “the red apple” and 𝒚 = “red apple”. The tokenizer tok is space-splitting
(unigrams, 𝑛 = 1).
Histogram Function (Unigrams):

Histtok(𝒚̂) : {the, red, apple} ↦→ {1, 1, 1}, Histtok(𝒚) : {red, apple} ↦→ {1, 1}.

Element-wise Minimum:(
Histtok(𝒚̂) ∧ Histtok(𝒚)

)
(red) = 1, (·) (apple) = 1, (·) (the) = 0.

1-Norms and Metrics: Since ∥Histtok(𝒚̂) ∥1 = 3, ∥Histtok(𝒚) ∥1 = 2, ∥ ∧ ∥1 = 2,

Prec = 2/3, Rec = 2/2 = 1, F1 =
2 · (2/3) · 1
(2/3) + 1

=
4/3
5/3 = 0.8.

14

Exercise 6.1 (EM/F1 Exercise). Let 𝒚̂ = “capital of France”, 𝒚 = “the capital of France” (with
articles removed by normalization), and let tok be space-splitting. Calculate EM and F1
step-by-step.

Answer. Normalization and EM: After removing articles and lowercasing, norm(𝒚̂) =

norm(𝒚) = “capital of france”, so EM = 1.
Histogram Function (Unigrams):

Histtok(𝒚̂) : {capital, of, france} ↦→ {1, 1, 1},

Histtok(𝒚) : {the, capital, of, france} ↦→ {1, 1, 1, 1}.

Element-wise Minimum and 1-Norms:

Histtok(𝒚̂) ∧ Histtok(𝒚)

1
= 3,

Histtok(𝒚̂)

1
= 3,

Histtok(𝒚)

1
= 4.

Metric Calculation: Prec = 3/3 = 1, Rec = 3/4, F1 = 2·1·3/4
1+3/4 = 1.5

1.75 ≈ 0.857.

6.3 Machine Translation: BLEU

Example 6.4 (WMT14 (en→de) Data Example). Input (English): It has always taken place.
Output (gold German): Das war schon immer so.

Input/Output Format. Source sentence 𝒙, candidate translation 𝒚̂, and a set of references
R = {𝒚 (1) , . . . , 𝒚 (𝑀)} [8].

Motivation for Introduction. In translation, there are paraphrases and differences in
word order, making simple accuracy or EM unhelpful for useful comparisons. BLEU aggre-
gates 𝑛-gram precisions at multiple levels and also penalizes outputs that are too short
with a brevity penalty, thereby measuring both fluency and adequacy.

Definition 6.4 (Rigorous Definition of BLEU-𝑁 (Histogram Notation)). Given a fixed tokenizer
tok and 𝑛-gram lengths 𝑛 = 1, . . . , 𝑁. The clipped 𝑛-gram precision 𝑝𝑛 is

𝑝𝑛 =

 HistG𝑛 (tok(𝒚̂)) ∧
(∨𝑀

𝑚=1 HistG𝑛 (tok(𝒚 (𝑚)))

)

1

 HistG𝑛 (tok(𝒚̂))

1

=

∑
𝑔∈V𝑛 min

(
HistG𝑛 (tok(𝒚̂)) (𝑔), max𝑚 HistG𝑛 (tok(𝒚 (𝑚))) (𝑔)

)∑
𝑔∈V𝑛 HistG𝑛 (tok(𝒚̂)) (𝑔)

.

(22)
The brevity penalty BP is

BP =


1 if | 𝒚̂ | > 𝑟,
exp(1 − 𝑟/| 𝒚̂ |) if | 𝒚̂ | ≤ 𝑟,

(23)

where 𝑟 is a representative reference length (in the standard implementation, the reference
length closest to the candidate length). Using weights 𝑤𝑛 ≥ 0 (standard is 𝑤𝑛 = 1/𝑁,

15

∑𝑁
𝑛=1 𝑤𝑛 = 1), we define

BLEU = BP · exp
(
𝑁∑
𝑛=1

𝑤𝑛 log 𝑝𝑛

)
∈ [0, 1] . (24)

Example 6.5 (Manual Calculation of BLEU-2 (1 reference, Rigorous Procedure)). Setting:
Reference 𝒚 = “the cat is on the mat”, candidate 𝒚̂ = “the cat the cat on the mat”. tok is
space-splitting, 𝑁 = 2, 𝑤1 = 𝑤2 = 1

2 .
Unigram Histogram and Clipping:

Histtok(𝒚̂) (the) = 3, Histtok(𝒚) (the) = 2, Histtok(𝒚̂) (cat) = 2, Histtok(𝒚) (cat) = 1,

Histtok(𝒚̂) (on) = 1, Histtok(𝒚) (on) = 1, Histtok(𝒚̂) (mat) = 1, Histtok(𝒚) (mat) = 1.

∥Histtok(𝒚̂) ∥1 = 7,

Histtok(𝒚̂) ∧ Histtok(𝒚)

1
= 5.

Thus 𝑝1 = 5/7.
Bigram Histogram and Clipping:

𝒚̂ : {the cat × 2, cat the × 1, cat on × 1, on the × 1, the mat × 1},

𝒚 : {the cat, cat is, is on, on the, the mat}.

∥HistG2 (tok(𝒚̂)) ∥1;V2 = 6,

HistG2 (tok(𝒚̂)) ∧ HistG2 (tok(𝒚))

1;V2 = 3. Thus 𝑝2 = 3/6 = 0.5.

BP and Final Score: 𝑟 = |𝒚 | = 6, | 𝒚̂ | = 7 ⇒ BP = 1.

BLEU-2 = exp
(1
2 log

5
7 +

1
2 log

1
2

)
=

√
5

7
× 1

2
=

√
5

14
≈ 0.5976.

Exercise 6.2 (BLEU-1 Exercise). Let reference 𝒚: “a b c d”, candidate 𝒚̂: “a c e”, with tok as
space-splitting and 𝑁 = 1 (unigrams only). Calculate BLEU-1 (including BP) step-by-step.

Answer. Unigram Histogram: Histtok(𝒚̂) (a) = 1, Histtok(𝒚̂) (c) = 1, Histtok(𝒚̂) (e) = 1.
Histtok(𝒚) (a) = 1, Histtok(𝒚) (b) = 1, Histtok(𝒚) (c) = 1, Histtok(𝒚) (d) = 1.
Clipping and 1-Norm: ∥Histtok(𝒚̂) ∥1 = 3, the number of matches for {a, c} is 2, so

Histtok(𝒚̂) ∧ Histtok(𝒚)

1
= 2. Thus 𝑝1 = 2/3.

BP: 𝑟 = 4, | 𝒚̂ | = 3, so BP = exp(1 − 4/3) = exp(−1/3).
Final Score: BLEU-1 = BP · 𝑝1 = exp(−1/3) · 23 ≈ 0.478.

6.4 Machine Translation: chrF

Input/Output Format. Candidate 𝒚̂, reference 𝒚 (based on character 𝑛-grams) [9].
Motivation for Introduction. For morphologically rich languages or in situations with un-

stable tokenization, word-level 𝑛-grams alone are not robust. chrF, based on character 𝑛-

16

grams, is robust to spelling differences and inflectional changes, capturing fine-grained
matches.

Definition 6.5 (Rigorous Definition of chrF (Character n-gram Histogram Notation)). For any
string 𝒔, let the character tokenizer be tokchar, and for 𝑛 = 1, . . . , 𝑁𝑐, let

Gchar
𝑛 := G𝑛 used on V∗

char

(handling of spaces and punctuation follows a fixed preprocessing rule). The micro-
averaged precision and recall are defined as

Precchr =

∑𝑁𝑐

𝑛=1

 HistGchar
𝑛 (tokchar (𝒚̂)) ∧ HistGchar

𝑛 (tokchar (𝒚))

1;V𝑛

char∑𝑁𝑐

𝑛=1

 HistGchar
𝑛 (tokchar (𝒚̂))

1;V𝑛

char

, (25)

Recchr =

∑𝑁𝑐

𝑛=1

 HistGchar
𝑛 (tokchar (𝒚̂)) ∧ HistGchar

𝑛 (tokchar (𝒚))

1;V𝑛

char∑𝑁𝑐

𝑛=1

 HistGchar
𝑛 (tokchar (𝒚))

1;V𝑛

char

,

and for a parameter 𝛽 > 0, we define

chrF𝛽 =
(1 + 𝛽2) Precchr · Recchr

Recchr + 𝛽2Precchr
∈ [0, 1] . (26)

Typically, 𝑁𝑐 = 6, 𝛽 = 2 are often used.

Example 6.6 (Complete Manual Calculation of chrF𝛽=2 (𝑁𝑐 = 3, Rigorous Procedure)). Set-
ting: 𝒚 = “color”, 𝒚̂ = “colour”. Preprocessing is lowercase English letters, ignoring spaces,
𝑁𝑐 = 3, 𝛽 = 2.
Histogram Sums for each 𝑛:

• 𝑛 = 1: The characters in 𝒚 are (𝑐, 𝑜, 𝑙, 𝑜, 𝑟), total 5. In 𝒚̂, they are (𝑐, 𝑜, 𝑙, 𝑜, 𝑢, 𝑟), total 6.
The sum of clipped counts of common characters is 5.

• 𝑛 = 2: The 2-grams in 𝒚 are {𝑐𝑜, 𝑜𝑙, 𝑙𝑜, 𝑜𝑟}, total 4. In 𝒚̂, they are {𝑐𝑜, 𝑜𝑙, 𝑙𝑜, 𝑜𝑢, 𝑢𝑟}, total
5. The total count of common 2-grams is 3.

• 𝑛 = 3: In 𝒚, they are {𝑐𝑜𝑙, 𝑜𝑙𝑜, 𝑙𝑜𝑟}, total 3. In 𝒚̂, they are {𝑐𝑜𝑙, 𝑜𝑙𝑜, 𝑙𝑜𝑢, 𝑜𝑢𝑟}, total 4.
The total count of common 3-grams is 2.

Micro-averaging: Sum of intersections = 5+3+2 = 10, candidate denominator = 6+5+4 = 15,
reference denominator = 5 + 4 + 3 = 12.

Precchr = 10/15 = 2
3 , Recchr = 10/12 = 5

6 .

Final Score: chrF𝛽=2 =
(1 + 22) · (2/3) · (5/6)

(5/6) + 22 · (2/3) =
5 · (10/18)

(5/6) + (8/3) =
50/18
21/6 =

25/9
7/2 =

50

63
≈ 0.794.

17

Exercise 6.3 (chrF𝛽=2 Exercise (𝑁𝑐 = 3)). Let 𝒚 = “center”, 𝒚̂ = “centre”. Preprocessing is
lowercase English letters, ignoring spaces, 𝑁𝑐 = 3, 𝛽 = 2. Calculate chrF𝛽=2 step-by-step.

Answer. 𝑛 = 1: The characters in 𝒚 are 𝑐, 𝑒, 𝑛, 𝑡, 𝑒, 𝑟 (total 6), and in 𝒚̂ are 𝑐, 𝑒, 𝑛, 𝑡, 𝑟, 𝑒 (total
6). The character histograms are identical, so the sum of clipped matches is 6.
𝑛 = 2: In 𝒚, they are {𝑐𝑒, 𝑒𝑛, 𝑛𝑡, 𝑡𝑒, 𝑒𝑟} (total 5), and in 𝒚̂ they are {𝑐𝑒, 𝑒𝑛, 𝑛𝑡, 𝑡𝑟, 𝑟𝑒} (total 5).
The matches are {𝑐𝑒, 𝑒𝑛, 𝑛𝑡}, for a total of 3.
𝑛 = 3: In 𝒚, they are {𝑐𝑒𝑛, 𝑒𝑛𝑡, 𝑛𝑡𝑒, 𝑡𝑒𝑟} (total 4), and in 𝒚̂ they are {𝑐𝑒𝑛, 𝑒𝑛𝑡, 𝑛𝑡𝑟, 𝑡𝑟𝑒} (total 4).
The matches are {𝑐𝑒𝑛, 𝑒𝑛𝑡}, for a total of 2.
Micro-averaging: Sum of intersections = 6+3+2 = 11, candidate denominator = 6+5+4 = 15,
reference denominator = 6 + 5 + 4 = 15. Thus,

Precchr = Recchr = 11/15.

Final Score: When Prec = Rec, chrF𝛽 = Prec = Rec, so chrF𝛽=2 =
11

15
≈ 0.733.

6.5 Lexical Semantic Similarity: BERTScore (Implementation-reproducible
Rigorous Definition)

Input/Output Format. Candidate 𝒚̂ and reference 𝒚 are tokenized (into subwords), and
each token is mapped to an embedding from a pre-trained language model [12].

Motivation for Introduction. 𝑛-gram based methods cannot sufficiently capture synonyms
and paraphrases. BERTScore measures the semantic consistency between the candidate
and reference using similarity in a continuous vector space, enabling an evaluation that
does not depend on superficial lexical matching.

However, when considering the average similarity of embedding representations, the
behavior of frequent but semantically unimportant words can become too dominant. IDF
weighting emphasizes information-rich words and relatively reduces the contribution of
common words.

Definition 6.6 (Rigorous Definition of Document Frequency and Inverse Document Fre-
quency (IDF)). Let D be a finite set (a collection of documents) and tok be a tokenizer.
For any token 𝑢 ∈ V, the document frequency is defined as

dfD (𝑢) :=
��{ 𝒅 ∈ D

�� 𝑢 ∈ tok(𝒅) }
��.

Then, the inverse document frequency (IDF) is defined as

idfD (𝑢) := log

(
|D| + 1

dfD (𝑢) + 1

)
(the +1 is for smoothing to avoid division by zero).

18

Definition 6.7 (Complete Rigorous Definition of BERTScore (𝐹1)). The following hyperpa-
rameters and preprocessing are fixed.

• A pre-trained model 𝑀 and a single layer 𝐿 (or layer weights 𝛼).

• A tokenizer tok𝑀 (which returns a subword sequence). Special tokens are excluded.

• IDF weights: If enabled, use idfD from Definition 6.6.

Embeddings: Let tok𝑀 (𝒚̂) = (𝑤̂1, . . . , 𝑤̂𝑚) and tok𝑀 (𝒚) = (𝑤1, . . . , 𝑤𝑛), and let the hidden
state vectors be 𝒉𝑖, 𝒈 𝑗 ∈ R𝑑 (with layer weighting if necessary).
Normalization: 𝒉̃𝑖 = 𝒉𝑖/∥𝒉𝑖∥2, 𝒈̃ 𝑗 = 𝒈 𝑗/∥𝒈 𝑗 ∥2.
Similarity Matrix: 𝑠𝑖, 𝑗 := 𝒉̃

⊤
𝑖 𝒈̃ 𝑗 ∈ [−1, 1].

Weights: 𝑢𝑖 := idfD (𝑤̂𝑖) (if not used, 𝑢𝑖 ≡ 1), 𝑣 𝑗 := idfD (𝑤 𝑗) (similarly).
One-directional Maximal Matching (Precision/Recall):

PrecBERT =

∑𝑚
𝑖=1 𝑢𝑖 ·max1≤ 𝑗≤𝑛 𝑠𝑖, 𝑗∑𝑚

𝑖=1 𝑢𝑖
, (27)

RecBERT =

∑𝑛
𝑗=1 𝑣 𝑗 ·max1≤𝑖≤𝑚 𝑠𝑖, 𝑗∑𝑛

𝑗=1 𝑣 𝑗
. (28)

F1 Aggregation: F1BERT =
2PrecBERT · RecBERT
PrecBERT + RecBERT

.

Example 6.7 (Complete Manual Calculation of BERTScore (𝐹1) (Small-scale vectors, IDF
disabled)). Setting: Word embeddings (already ℓ2-normalized) are given as:

the = (0, 0, 1), red = (1, 0, 0), apple = (0, 1, 0), apples = (0, 0.8, 0.6).

Let reference 𝒚 = “red apple” and candidate 𝒚̂ = “the red apples”. Assume tok𝑀 is word-level
(no subword splitting in this example), and IDF is disabled (𝑢𝑖 = 𝑣 𝑗 ≡ 1).
Similarity Matrix 𝑠𝑖, 𝑗 (rows: candidate, columns: reference):

red apple

the 0 0

red 1 0

apples 0 0.8

Precision: Average of the column-wise maximums for each candidate token ⇒ Prec =
max(0,0)+max(1,0)+max(0,0.8)

3 = 0+1+0.8
3 = 0.6.

Recall: Average of the row-wise maximums for each reference token ⇒ Rec =
max(0,1,0)+max(0,0,0.8)

2 = 1+0.8
2 = 0.9.

F1: F1BERT =
2 · 0.6 · 0.9
0.6 + 0.9

=
1.08

1.5
= 0.72.

19

Exercise 6.4 (BERTScore (𝐹1) Exercise (Small-scale vectors, IDF disabled)). Given word
embeddings (normalized) as

fast = (1, 0, 0), car = (0, 1, 0), quick = (0.9, 0.1, 0), automobile = (0, 1/
√
2, 1/

√
2).

Let reference 𝒚 = “fast car” and candidate 𝒚̂ = “quick automobile”, with IDF disabled. Calcu-
late BERTScore (𝐹1) step-by-step.

Answer. Similarity Matrix 𝑠𝑖, 𝑗 (rows: candidate {quick, automobile}, columns: reference
{fast, car}):

𝑠(quick, fast) = 0.9, 𝑠(quick, car) = 0.1, 𝑠(automobile, fast) = 0, 𝑠(automobile, car) = 1/
√
2 ≈ 0.7071.

Precision: Average the maximums for each candidate (row).

Prec =
max(0.9, 0.1) +max(0, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

Recall: Average the maximums for each reference (column).

Rec =
max(0.9, 0) +max(0.1, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

F1: Since Prec and Rec are equal, F1BERT = Prec = Rec ≈ 0.8036. (Exactly = (0.9 + 1/
√
2)/2)

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Input/Output Format. Candidate summary 𝒚̂, reference 𝒚 [5].

Example 6.8 (XSum Summarization Data Example). Input (article snippet):
Media playback is not supported on this device
The 29-year-old committed two fouls but jumped 7.90m with his last effort to go through as
the 10th of 12 qualifiers.
“I think I need to apologise to my
Output (gold summary):
Great Britain’s Greg Rutherford sneaked into Saturday’s long jump final to maintain his hopes
of defending his Olympic crown.

Motivation for Introduction. In summarization, both content selection and word order
preservation are important. ROUGE-L, based on the Longest Common Subsequence
(LCS), evaluates consistency that cannot be measured solely by the number of overlapping
words, while gently respecting word order.

Definition 6.8 (Rigorous Definition of ROUGE-L F1). For a fixed tokenizer tok, the Longest
Common Subsequence length LCS(𝒚̂, 𝒚) is defined as the length (number of tokens) of

20

the longest common subsequence of tok(𝒚̂) and tok(𝒚). Then,

Prec =
LCS(𝒚̂, 𝒚)

| 𝒚̂ | , Rec =
LCS(𝒚̂, 𝒚)

|𝒚 | , (29)

ROUGE-L =
(1 + 𝛽2) Prec · Rec

Rec + 𝛽2Prec , (𝛽 > 0)

is defined. Typically, 𝛽 = 1 (F1) is widely used.

Example 6.9 (Data Intuition and Step-by-Step Calculation of ROUGE-L (Rigorous)). Set-
ting: 𝒚 = “the quick brown fox”, 𝒚̂=“quick brown fox” (token-level).
LCS: The longest common subsequence is “quick brown fox” with length 3, so LCS = 3.
| 𝒚̂ | = 3, |𝒚 | = 4.
Calculation:

Prec = 3/3 = 1, Rec = 3/4, F1 =
2 · 1 · 3/4
1 + 3/4 =

1.5

1.75
≈ 0.857.

Exercise 6.5 (LCS Exercise). Let 𝒚 = “a b c d” and 𝒚̂ = “a c d” (space-splitting). Calculate
ROUGE-L (F1) step-by-step.

Answer. LCS: The longest common subsequence is “a c d” with length 3, hence LCS = 3.
| 𝒚̂ | = 3, |𝒚 | = 4.
Metric Calculation: Prec = 3/3 = 1, Rec = 3/4 = 0.75, F1 = 2·1·0.75

1+0.75 = 1.5
1.75 ≈ 0.857.

6.7 Math QA (GSM8K): Numeric Accuracy

Input/Output Format. A natural language problem statement 𝒒 and a numerical correct
answer 𝑦 ∈ R (or a stringified number) [2]. The output 𝑦 is compared after numerical nor-
malization.

Example 6.10 (GSM8K (numeric EM) Data Example). Input (question):
Jared is trying to increase his typing speed. He starts with 47 words per minute (WPM).
After some lessons the next time he tests his typing speed it has increased to 52 WPM. If
he continues to increase his typing speed once more by 5 words, what will be the average
of the three measurements?
Output (gold numeric answer):
Jared types at 52 WPM and increases it by 5 WPM, 52 + 5 = <<52+5=57>>57 WPM.
His average over all his measured words-per-minute is 47 + 52 + 57 =
<<47+52+57=156>>156.
His total is 156 / 3 typing speeds = <<156/3=52>>52 WPM as Jared’s average typing speed.

Motivation for Introduction. In numerical response tasks, there are variations in notation
(digit separators, decimal points, units). Instead of string matching, we determine if they are
numerically equivalent by defining numerical normalization before calculating accuracy.

21

Definition 6.9 (Rigorous Definition of Numeric Accuracy). Fix a numeric normalization
function num : Str ∪ R → R. This is a map that (i) converts numbers, fractions, percentages,
and units (km, m, $ etc.) in a string to a default unit system, (ii) removes digit separators
and extra whitespace (if necessary), and (iii) maps rational representations to real numbers
(if necessary). For 𝑁 questions,

Accuracy :=
1

𝑁

𝑁∑
𝑗=1

1
[
num(𝑦 𝑗) = num(𝑦 𝑗)

]
(30)

is defined. The equality on the right-hand side is an exact match as real numbers (if a
rounding rule is used, the rule is fixed).

Example 6.11 (Normalization without decimals or units (Rigorous Procedure)). Setting: 𝑦 =
3.5, 𝑦 = “3.5000”.
Normalization: num(3.5) = 3.5, num(“3.5000”) = 3.5 (remove trailing zeros).
Judgment: Since 3.5 = 3.5, it is a correct answer.

Exercise 6.6 (Unit Normalization Exercise). Let 𝑦 = 100 (meters), 𝑦 = “0.1 km”. Assume
num normalizes to SI units and converts km to m. Show the accuracy judgment with a
step-by-step calculation.

Answer. Normalization: num(𝑦) = 100 (m), num(𝑦) = num(“0.1 km”) = 0.1×1000 = 100 (m).
Judgment: As real numbers, 100 = 100, so 1[num(𝑦) = num(𝑦)] = 1. Therefore (for a single
question), Accuracy = 1.

7 Summary

We summarize the key points corresponding to the learning objectives of this lecture.

• Non-triviality: Natural language output has infinitely many semantically equivalent
solutions, making the application of classical evaluation methods difficult.

• Distinction: We clearly distinguish between the evaluation of the language model
itself (PPL, most likely option) and the evaluation of the string output (EM/F1, BLEU,
ROUGE-L, chrF, BERTScore, Numeric Accuracy).

• Application: We rigorously defined each metric and understood the calculation pro-
cedures through concrete examples and exercises.

8 Preview of the Next Lecture

In this lecture, we dealt with absolute evaluation metrics that target a single probabilistic
language model. In the next lecture, we will address relative evaluation metrics that quantify

22

the deviation from a given reference probabilistic language model (e.g., distances and
divergences between distributions).

References

[1] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc,
the ai2 reasoning challenge. In Proc. of NAACL-HLT, 2018.

[2] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. In arXiv
preprint arXiv:2110.14168, 2021. GSM8K dataset.

[3] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. In
International Conference on Learning Representations (ICLR), 2021.

[4] Fred Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.

[5] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Proc. of
Workshop on Text Summarization Branches Out, 2004.

[6] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models
mimic human falsehoods. In Proc. of ACL, 2022.

[7] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sen-
tinel mixture models. In International Conference on Learning Representations (ICLR)
Workshop, 2017. Introduces WikiText datasets (WikiText-2/WikiText-103).

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proc. of ACL, 2002.

[9] Maja Popović. chrf: Character n-gram f-score for automatic mt evaluation. In Proc. of
WMT, 2015.

[10] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. In Proc. of EMNLP, 2016.

[11] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag:
Can a machine really finish your sentence? In Proc. of ACL, 2019.

[12] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. In Proc. of ICLR, 2020.

23

	Introduction
	Review of the Previous Lecture
	Learning Outcomes

	Preliminaries: Mathematical Notations
	The Importance of Automatic Evaluation
	Formulation of Automatic Evaluation in Classical Supervised Learning
	Why Automatic Evaluation of Natural Language Output is Difficult

	Two Major Families: Language Model Evaluation vs. String Output Evaluation
	Evaluation of Probabilistic Language Models
	Perplexity
	Accuracy of the Most Likely Option in Multiple-Choice

	Evaluation of Natural Language String Input/Output
	Motivation, Rigorous Definition, and Intuition of n-grams
	QA (SQuAD): Exact Match and Token-level F1
	Machine Translation: BLEU
	Machine Translation: chrF
	Lexical Semantic Similarity: BERTScore (Implementation-reproducible Rigorous Definition)
	Summarization: ROUGE-L (Longest Common Subsequence)
	Math QA (GSM8K): Numeric Accuracy

	Summary
	Preview of the Next Lecture

