
AI Applications Lecture 8

Evaluation of Probabilistic Language Models

SUZUKI, Atsushi
Jing WANG

Outline

Introduction

Preliminaries: Mathematical Notations

The Importance of Automatic Evaluation

Two Major Families of Evaluation

Evaluation of Probabilistic Language Models

Evaluation of Natural Language String Input/Output

Summary

Next Time

2/95

Introduction

1.1 Review of the Previous Lecture

In the previous lectures, we learned about the natural language sequence
generation pipeline, including neural networks and tokenization.

We also provided a rigorous formulation of:

• probabilistic language models

• token generators based on sampling, greedy search, and beam search.

In this lecture, we will focus on evaluation, addressing how to automatically and
quantitatively evaluate both probabilistic language models and natural language
inputs/outputs.

3/95

1.1 Review of the Previous Lecture

In the previous lectures, we learned about the natural language sequence
generation pipeline, including neural networks and tokenization.

We also provided a rigorous formulation of:

• probabilistic language models

• token generators based on sampling, greedy search, and beam search.

In this lecture, we will focus on evaluation, addressing how to automatically and
quantitatively evaluate both probabilistic language models and natural language
inputs/outputs.

3/95

1.1 Review of the Previous Lecture

In the previous lectures, we learned about the natural language sequence
generation pipeline, including neural networks and tokenization.

We also provided a rigorous formulation of:

• probabilistic language models

• token generators based on sampling, greedy search, and beam search.

In this lecture, we will focus on evaluation, addressing how to automatically and
quantitatively evaluate both probabilistic language models and natural language
inputs/outputs.

3/95

1.2 Learning Outcomes

Through this lecture, students should be able to:

• Explain the non-triviality of evaluation in natural language processing
compared to evaluation in classical supervised machine learning.

• Distinguish between the evaluation of natural language string input/output
and the evaluation of probabilistic language models.

• Evaluate natural language string input/output using probabilistic language
models with appropriate metrics.

4/95

1.2 Learning Outcomes

Through this lecture, students should be able to:

• Explain the non-triviality of evaluation in natural language processing
compared to evaluation in classical supervised machine learning.

• Distinguish between the evaluation of natural language string input/output
and the evaluation of probabilistic language models.

• Evaluate natural language string input/output using probabilistic language
models with appropriate metrics.

4/95

1.2 Learning Outcomes

Through this lecture, students should be able to:

• Explain the non-triviality of evaluation in natural language processing
compared to evaluation in classical supervised machine learning.

• Distinguish between the evaluation of natural language string input/output
and the evaluation of probabilistic language models.

• Evaluate natural language string input/output using probabilistic language
models with appropriate metrics.

4/95

Preliminaries: Mathematical
Notations

2. Preliminaries: Mathematical Notations

Set:

• Sets: A
• Membership: x ∈ A
• Empty set: {}
• Roster notation: {a, b, c}
• Set-builder: {x ∈ A|P (x)}
• Cardinality: |A|
• Real numbers: R,R>0,R≥0

• Integers: Z,Z>0,Z≥0

• Integer range: [1, k]Z := {1, . . . , k}

Function:

• f : X → Y : f maps from X to Y.

• y = f(x): The output of f for input x.

Definition:

• (LHS) := (RHS): Left side is defined
by the right side.

5/95

2. Preliminaries: Mathematical Notations

Sequence: Denoted by a = (a1, a2, . . .).

• A function a : [1, n]Z → A.

• Length is denoted by |a|.

Vector: Denoted by v.

• A column of numbers, v ∈ Rn.

• i-th element is vi.

Matrix: Denoted by A.

• m× n matrix: A ∈ Rm,n.

• (i, j)-th element is ai,j .

• Transpose: A⊤.

Tensor: Denoted by A.

• Simply a multi-dimensional array.

• Vector → 1st-order, Matrix →
2nd-order.

6/95

The Importance of Automatic
Evaluation

3. The Importance of Automatic Evaluation

When evaluating computational methods, it is practically useful to employ
automatic and quantitative evaluation whenever possible.

Automatic evaluation does not require human resources and also contributes to
ensuring the reproducibility of experiments.

7/95

3. The Importance of Automatic Evaluation

When evaluating computational methods, it is practically useful to employ
automatic and quantitative evaluation whenever possible.

Automatic evaluation does not require human resources and also contributes to
ensuring the reproducibility of experiments.

7/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Motivation for Introduction.

In supervised learning, since the input and correct output are explicitly given, fixing
an abstract framework that provides an average evaluation by comparing model
predictions with the correct answers allows for a unified description of evaluation
metrics for individual tasks.

Definition (Framework for Classical Evaluation)

Given an input space X , an output space Y, a trained map f : X → Y , and an
evaluation function E : Y × Y → R≥0. For a test dataset {(xi, yi)}Ni=1, the
evaluation value is defined as

Eval(f) :=
1

N

N∑
i=1

E
(
f(xi), yi

)
. (1)

Here, N ∈ Z>0 is the number of test points, and E can be a loss (smaller is
better) or a score (larger is better).

8/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Motivation for Introduction.

In supervised learning, since the input and correct output are explicitly given, fixing
an abstract framework that provides an average evaluation by comparing model
predictions with the correct answers allows for a unified description of evaluation
metrics for individual tasks.
Definition (Framework for Classical Evaluation)

Given an input space X , an output space Y, a trained map f : X → Y , and an
evaluation function E : Y × Y → R≥0. For a test dataset {(xi, yi)}Ni=1, the
evaluation value is defined as

Eval(f) :=
1

N

N∑
i=1

E
(
f(xi), yi

)
. (1)

Here, N ∈ Z>0 is the number of test points, and E can be a loss (smaller is
better) or a score (larger is better).

8/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Remark

Typical examples include the squared Euclidean distance E(ŷ,y) = ‖ŷ − y‖22
when Y = Rd, and the 0-1 loss E(ŷ, y) = 1[ŷ 6= y] when Y is a finite set.

Example (Calculation Example of Squared Error and 0-1 Loss)

Regression: If ŷ = (2, 0)⊤, y = (1, 1)⊤, then

‖ŷ − y‖22 = (2− 1)2 + (0− 1)2 = 1 + 1 = 2. (2)

Classification: If ŷ = cat, y = dog, then E(ŷ, y) = 1.

9/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Exercise (Exercise on Classical Evaluation)

(1) Find the squared distance between ŷ = (3,−1)⊤ and y = (1, 2)⊤.

(2) Find the
0-1 distance for ŷ = A, y = B.

10/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Exercise (Exercise on Classical Evaluation)

(1) Find the squared distance between ŷ = (3,−1)⊤ and y = (1, 2)⊤. (2) Find the
0-1 distance for ŷ = A, y = B.

10/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Answer
(1) Step-by-step calculation of squared distance:

• First, find the difference vector: ŷ − y = (3− 1,−1− 2)⊤ = (2,−3)⊤.

• Then, calculate the squared norm:

‖ŷ − y‖22 = (2)2 + (−3)2 = 4 + 9 = 13.

(2) Step-by-step calculation of 0-1 distance:

• Since the prediction ŷ and the true label y do not match, the indicator function
is true: 1[ŷ 6= y] = 1.

11/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Answer
(1) Step-by-step calculation of squared distance:

• First, find the difference vector: ŷ − y = (3− 1,−1− 2)⊤ = (2,−3)⊤.

• Then, calculate the squared norm:

‖ŷ − y‖22 = (2)2 + (−3)2 = 4 + 9 = 13.

(2) Step-by-step calculation of 0-1 distance:

• Since the prediction ŷ and the true label y do not match, the indicator function
is true: 1[ŷ 6= y] = 1.

11/95

3.1 Formulation of Automatic Evaluation in Classical Supervised Learning

Answer
(1) Step-by-step calculation of squared distance:

• First, find the difference vector: ŷ − y = (3− 1,−1− 2)⊤ = (2,−3)⊤.

• Then, calculate the squared norm:

‖ŷ − y‖22 = (2)2 + (−3)2 = 4 + 9 = 13.

(2) Step-by-step calculation of 0-1 distance:

• Since the prediction ŷ and the true label y do not match, the indicator function
is true: 1[ŷ 6= y] = 1.

11/95

3.2 Why Automatic Evaluation of Natural Language Output is Difficult

In the space of natural language strings, semantic equivalence is essential, and
there can be infinitely many correct answers.

Therefore:

• (i) it is impractical to prepare all possible correct answers on the test side.

• (ii) automatically determining the semantic equivalence between input
strings is not easy.

For this reason, various evaluation metrics have been proposed.

12/95

3.2 Why Automatic Evaluation of Natural Language Output is Difficult

In the space of natural language strings, semantic equivalence is essential, and
there can be infinitely many correct answers.

Therefore:

• (i) it is impractical to prepare all possible correct answers on the test side.

• (ii) automatically determining the semantic equivalence between input
strings is not easy.

For this reason, various evaluation metrics have been proposed.

12/95

3.2 Why Automatic Evaluation of Natural Language Output is Difficult

In the space of natural language strings, semantic equivalence is essential, and
there can be infinitely many correct answers.

Therefore:

• (i) it is impractical to prepare all possible correct answers on the test side.

• (ii) automatically determining the semantic equivalence between input
strings is not easy.

For this reason, various evaluation metrics have been proposed.

12/95

3.2 Why Automatic Evaluation of Natural Language Output is Difficult

In the space of natural language strings, semantic equivalence is essential, and
there can be infinitely many correct answers.

Therefore:

• (i) it is impractical to prepare all possible correct answers on the test side.

• (ii) automatically determining the semantic equivalence between input
strings is not easy.

For this reason, various evaluation metrics have been proposed.

12/95

Two Major Families of Evaluation

4. Two Major Families: Language Model Evaluation vs. String Output Evalu-
ation

Evaluation methods can be broadly divided into the following two categories:

• Evaluation of Probabilistic Language Models:
• Examples include perplexity and the most likely option in multiple-choice

tasks (MMLU, HellaSwag, etc.).
• The advantage is that it avoids the difficulties of string generation.
• The disadvantage is that it does not measure the string output performance

itself.

• Evaluation of Natural Language String Input/Output:
• Examples include Exact Match/F1, BLEU, ROUGE-L, BERTScore, and

Accuracy for math QA.
• The advantage is that it measures the output performance directly.
• The disadvantage is that the calculation method differs for each task and may

have language dependencies.

13/95

4. Two Major Families: Language Model Evaluation vs. String Output Evalu-
ation

Evaluation methods can be broadly divided into the following two categories:

• Evaluation of Probabilistic Language Models:
• Examples include perplexity and the most likely option in multiple-choice

tasks (MMLU, HellaSwag, etc.).
• The advantage is that it avoids the difficulties of string generation.
• The disadvantage is that it does not measure the string output performance

itself.
• Evaluation of Natural Language String Input/Output:

• Examples include Exact Match/F1, BLEU, ROUGE-L, BERTScore, and
Accuracy for math QA.

• The advantage is that it measures the output performance directly.
• The disadvantage is that the calculation method differs for each task and may

have language dependencies.
13/95

Evaluation of Probabilistic
Language Models

5.1 Perplexity

Input/Output Format. Given a trained language model P and a tokenized
evaluation sequence t = (t1, . . . , tn).

Example (Sample from WikiText-2 [6] (English text))

Sample text:
Rifenburg lived 37 of his years in Buffalo . His wife , the former Jane Morris ,

was the head of the Buffalo Jills cheerleaders when they met . Rifenburg , who
was survived by three sons , (Douglas

14/95

5.1 Perplexity

Motivation for Introduction.

In free-form generation, there is no single correct sequence, making it difficult to
define a simple accuracy.

Therefore, we introduce perplexity, which evaluates how much likelihood the
model assigns to the observed sequence, using a length-normalized average
negative log-likelihood.

15/95

5.1 Perplexity

Motivation for Introduction.

In free-form generation, there is no single correct sequence, making it difficult to
define a simple accuracy.

Therefore, we introduce perplexity, which evaluates how much likelihood the
model assigns to the observed sequence, using a length-normalized average
negative log-likelihood.

15/95

5.1 Perplexity

Definition (Rigorous Definition of Cross-Entropy and Perplexity)

Let the vocabulary set be V, and a token sequence be t = (t1, . . . , tn). The
language model P provides a probability distribution over V for the next token,
conditioned on previous tokens:

P (· | t<i) with t<i := (t1, . . . , ti−1) (3)

Let the base of the logarithm be e. Then, the average negative log-likelihood
(token-level cross-entropy) is defined as

H(t;P) := − 1

n

n∑
i=1

logP
(
ti | t<i

)
, (4)

and the perplexity is defined as

PPL(t;P) := exp
(
H(t;P)

)
. (5)

16/95

5.1 Perplexity

Remark

Note that differences in tokenization can lead to different results. This is also true
for several other evaluation metrics.

17/95

5.1 Perplexity

Example (PPL Calculation Example (Rigorous Setting and Step-by-Step
Calculation))

Formal Setting:

• Vocabulary V = {a, b}
• Sequence t = (t1, t2, t3) = (a, b, a)

• Probabilities are given as:

P (a | ()) = 0.8

P (b | (a)) = 0.5

P (a | (a, b)) = 0.25

Here n = 3. Let’s calculate the perplexity.
18/95

5.1 Perplexity

Calculation Steps:

First, we write down the formula for the average negative log-likelihood, H(t;P):

H(t;P) = −1

3

(
logP (t1=a | ()) + logP (t2=b | (a)) + logP (t3=a | (a, b))

)

19/95

5.1 Perplexity

Calculation Steps:

Next, we plug in the given probability values:

H(t;P) = −1

3

(
logP (t1=a | ()) + logP (t2=b | (a)) + logP (t3=a | (a, b))

)
= −1

3

(
log 0.8 + log 0.5 + log 0.25

)

20/95

5.1 Perplexity

Calculation Steps:

Using the property that the sum of logs is the log of the product:

H(t;P) = −1

3

(
log 0.8 + log 0.5 + log 0.25

)
= −1

3
log(0.8× 0.5× 0.25) = −1

3
log 0.1.

This is the value for H(t;P).

21/95

5.1 Perplexity

Calculation Steps:

Finally, we compute the perplexity by taking the exponential of H:

PPL(t;P) = exp
(
−1

3 log 0.1
)
= 0.1−1/3 ≈ 2.154. (6)

The perplexity is approximately 2.154.

22/95

5.1 Perplexity

Exercise (PPL Exercise)

For t = (a, a), with P (a | ()) = 0.6 and P (a | (a)) = 0.3, calculate the PPL
step-by-step.

23/95

5.1 Perplexity

Answer
Step-by-step Calculation: The length of the sequence is n = 2.

H(t;P) = −1

2

(
logP (t1=a | ()) + logP (t2=a | (a))

)
= −1

2
(log 0.6 + log 0.3) = −1

2
log(0.18).

Therefore,
PPL(t;P) = exp(H) = (0.18)−1/2 ≈ 2.357.

24/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Input/Output Format. For each question j, a prompt (context) cj , a set of choices
Aj = {aj,1, . . . ,aj,Kj}, and a correct index yj ∈ [1,Kj]Z are given.

The model P provides the conditional likelihood for each choice (e.g., the sum
of token log-likelihoods).

25/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Input/Output Format. For each question j, a prompt (context) cj , a set of choices
Aj = {aj,1, . . . ,aj,Kj}, and a correct index yj ∈ [1,Kj]Z are given.

The model P provides the conditional likelihood for each choice (e.g., the sum
of token log-likelihoods).

25/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (HellaSwag [10] Data Example)

Choose the most plausible continuation for a given context. Input (stem):
[header] How to know what to expect on a newborn’s skin [title] Note your
newborn’s skin tone. [step] At birth, a newborn’s skin may be reddish or pinkish.
However, the baby’s hands and feet may be bluish... Choices:

• 0. As the newborn’s circulatory system opens, this bluish color will subside...

• 1. This means they will not produce much oxygen...

• 2. Therefore, it’s important to measure the temperature and tone...

• 3. A newborn’s skin color is linked to their normal appearance...

Output (gold label index): 0

26/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (ARC-Easy [1] Data Example)

Science question (multiple-choice)

Input (question): Which is the function of the gallbladder?
Input (choices): A: store bile, B: produce bile, C: store digestive

enzymes, D: produce digestive enzymes

Output (gold label): A

Example (ARC-Challenge Data Example)

More difficult science question (multiple-choice)

Input (question): Cities control the amount of pollution... How does this most
likely help people?
Input (choices): A: The air stays cleaner., B: Cars can travel at faster

speeds., ...
Output (gold label): A

27/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (MMLU (all) [3] Data Example)

Academic problems from various fields (multiple-choice)

Input (question): A state built a casino and issued bonds to finance its
construction... Output (gold index): 1

Example (TruthfulQA (MC1) Data [5] Example)

Multiple-choice questions to measure the tendency to imitate misinformation

Input (question): Can a husband and wife be arrested for the same crime in the
U.S.?
Output (gold index): 0

28/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Motivation for Introduction.

Since scoring free-form generation is difficult, framing the task as selecting from
choices facilitates automatic evaluation.

By explicitly defining a selection procedure based on the probabilistic likelihood
that a language model assigns to each choice, we can perform an evaluation that
does not depend on superficial features like string length.

29/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Motivation for Introduction.

Since scoring free-form generation is difficult, framing the task as selecting from
choices facilitates automatic evaluation.

By explicitly defining a selection procedure based on the probabilistic likelihood
that a language model assigns to each choice, we can perform an evaluation that
does not depend on superficial features like string length.

29/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Definition (Rigorous Definition of Accuracy based on Most Likely Option)

For question j, given context cj and choices {aj,k}, we tokenize each choice aj,k

into a sequence (t
(j,k)
1 , . . . , t

(j,k)
nj,k).

The log-likelihood sum score for each choice
is defined as:

Sj,k :=

nj,k∑
i=1

logP
(
t
(j,k)
i | t(j,k)<i , cj

)
(7)

The predicted label ŷj is the choice with the maximum score:

ŷj := arg max
k∈[1,Kj]Z

Sj,k (8)

The accuracy for N questions is the fraction of correct predictions:

Accuracy :=
1

N

N∑
j=1

1
[
ŷj = yj

]
(9)

where yj is the gold label.

30/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Definition (Rigorous Definition of Accuracy based on Most Likely Option)

For question j, given context cj and choices {aj,k}, we tokenize each choice aj,k

into a sequence (t
(j,k)
1 , . . . , t

(j,k)
nj,k). The log-likelihood sum score for each choice

is defined as:

Sj,k :=

nj,k∑
i=1

logP
(
t
(j,k)
i | t(j,k)<i , cj

)
(7)

The predicted label ŷj is the choice with the maximum score:

ŷj := arg max
k∈[1,Kj]Z

Sj,k (8)

The accuracy for N questions is the fraction of correct predictions:

Accuracy :=
1

N

N∑
j=1

1
[
ŷj = yj

]
(9)

where yj is the gold label.

30/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Definition (Rigorous Definition of Accuracy based on Most Likely Option)

For question j, given context cj and choices {aj,k}, we tokenize each choice aj,k

into a sequence (t
(j,k)
1 , . . . , t

(j,k)
nj,k). The log-likelihood sum score for each choice

is defined as:

Sj,k :=

nj,k∑
i=1

logP
(
t
(j,k)
i | t(j,k)<i , cj

)
(7)

The predicted label ŷj is the choice with the maximum score:

ŷj := arg max
k∈[1,Kj]Z

Sj,k (8)

The accuracy for N questions is the fraction of correct predictions:

Accuracy :=
1

N

N∑
j=1

1
[
ŷj = yj

]
(9)

where yj is the gold label.

30/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Definition (Rigorous Definition of Accuracy based on Most Likely Option)

For question j, given context cj and choices {aj,k}, we tokenize each choice aj,k

into a sequence (t
(j,k)
1 , . . . , t

(j,k)
nj,k). The log-likelihood sum score for each choice

is defined as:

Sj,k :=

nj,k∑
i=1

logP
(
t
(j,k)
i | t(j,k)<i , cj

)
(7)

The predicted label ŷj is the choice with the maximum score:

ŷj := arg max
k∈[1,Kj]Z

Sj,k (8)

The accuracy for N questions is the fraction of correct predictions:

Accuracy :=
1

N

N∑
j=1

1
[
ŷj = yj

]
(9)

where yj is the gold label.

30/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (Log-Likelihood Selection in a 4-choice setting (Rigorous Setting))

Setting:

• For a single question (N = 1), we have K1 = 4 choices.

• The log-likelihood sum scores for each choice are given as:

S = (S1,1, S1,2, S1,3, S1,4) = (−5.1, −4.2, −4.9, −6.0).

Step-by-step Calculation:

• Find the index of the maximum score:

ŷ1 = argmax{−5.1, −4.2, −4.9, −6.0} = 2.

• Compare with the gold label y1. If y1 = 2, then the prediction is correct,
1[ŷ1 = y1] = 1. Otherwise, it is 0.

31/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (Log-Likelihood Selection in a 4-choice setting (Rigorous Setting))

Setting:

• For a single question (N = 1), we have K1 = 4 choices.

• The log-likelihood sum scores for each choice are given as:

S = (S1,1, S1,2, S1,3, S1,4) = (−5.1, −4.2, −4.9, −6.0).

Step-by-step Calculation:

• Find the index of the maximum score:

ŷ1 = argmax{−5.1, −4.2, −4.9, −6.0} = 2.

• Compare with the gold label y1. If y1 = 2, then the prediction is correct,
1[ŷ1 = y1] = 1. Otherwise, it is 0.

31/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Example (Log-Likelihood Selection in a 4-choice setting (Rigorous Setting))

Setting:

• For a single question (N = 1), we have K1 = 4 choices.

• The log-likelihood sum scores for each choice are given as:

S = (S1,1, S1,2, S1,3, S1,4) = (−5.1, −4.2, −4.9, −6.0).

Step-by-step Calculation:

• Find the index of the maximum score:

ŷ1 = argmax{−5.1, −4.2, −4.9, −6.0} = 2.

• Compare with the gold label y1. If y1 = 2, then the prediction is correct,
1[ŷ1 = y1] = 1. Otherwise, it is 0.

31/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Exercise (Prediction from Log-Likelihoods)

Given scores S = (−10.0, −9.9, −10.5, −9.7), and the correct answer is the 4th
option. Calculate the accuracy step-by-step (for this single question).

32/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Answer
Step-by-step Calculation:

• First, we find the model’s prediction by taking the argmax of the scores:

ŷ1 = argmax{−10.0, −9.9, −10.5, −9.7} = 4.

• This prediction, 4, matches the correct gold label, which is also y1 = 4.

• Therefore, the indicator function is 1[ŷ1 = y1] = 1.

• Since it is a single question (N = 1), the accuracy is Accuracy = 1
1 × 1 = 1.

33/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Answer
Step-by-step Calculation:

• First, we find the model’s prediction by taking the argmax of the scores:

ŷ1 = argmax{−10.0, −9.9, −10.5, −9.7} = 4.

• This prediction, 4, matches the correct gold label, which is also y1 = 4.

• Therefore, the indicator function is 1[ŷ1 = y1] = 1.

• Since it is a single question (N = 1), the accuracy is Accuracy = 1
1 × 1 = 1.

33/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Answer
Step-by-step Calculation:

• First, we find the model’s prediction by taking the argmax of the scores:

ŷ1 = argmax{−10.0, −9.9, −10.5, −9.7} = 4.

• This prediction, 4, matches the correct gold label, which is also y1 = 4.

• Therefore, the indicator function is 1[ŷ1 = y1] = 1.

• Since it is a single question (N = 1), the accuracy is Accuracy = 1
1 × 1 = 1.

33/95

5.2 Accuracy of the Most Likely Option in Multiple-Choice

Answer
Step-by-step Calculation:

• First, we find the model’s prediction by taking the argmax of the scores:

ŷ1 = argmax{−10.0, −9.9, −10.5, −9.7} = 4.

• This prediction, 4, matches the correct gold label, which is also y1 = 4.

• Therefore, the indicator function is 1[ŷ1 = y1] = 1.

• Since it is a single question (N = 1), the accuracy is Accuracy = 1
1 × 1 = 1.

33/95

Evaluation of Natural Language
String Input/Output

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Motivation. In situations where we want to evaluate local word order and
co-occurrence (such as machine translation), it is necessary to measure the
degree of substring match between a candidate sentence and a reference
sentence.

• Exact matching of the whole sentence is too strict.

• Matching only the sets of words ignores word order.

Therefore, we use n-grams (contiguous token sequences of length n).

34/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Motivation. In situations where we want to evaluate local word order and
co-occurrence (such as machine translation), it is necessary to measure the
degree of substring match between a candidate sentence and a reference
sentence.

• Exact matching of the whole sentence is too strict.

• Matching only the sets of words ignores word order.

Therefore, we use n-grams (contiguous token sequences of length n).

34/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Motivation. In situations where we want to evaluate local word order and
co-occurrence (such as machine translation), it is necessary to measure the
degree of substring match between a candidate sentence and a reference
sentence.

• Exact matching of the whole sentence is too strict.

• Matching only the sets of words ignores word order.

Therefore, we use n-grams (contiguous token sequences of length n).

34/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Definition (n-gram Expansion)

Fix a tokenizer tok. For a token sequence (t1, t2, . . . , tm), the expansion
function to an n-gram sequence Gn is defined as:

Gn

(
(t1, . . . , tm)

)
:=
(
(t1, . . . , tn), (t2, . . . , tn+1), . . . , (tm−n+1, . . . , tm)

)
(10)

(if m < n, it results in an empty sequence ()).

35/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Example (Concrete Example of n-gram Expansion)

Setting: The English sentence s = “the quick brown fox jumps over the lazy dog”
is tokenized as:

tok(s) = (the, quick, brown, fox, jumps, over, the, lazy, dog)

The number of tokens is m = 9.

36/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

1-gram Expansion (Unigrams).

G1

(
tok(s)

)
=
(
(the), (quick), (brown), . . . , (dog)

)
The length is m = 9. This is just the sequence of individual tokens.

37/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

2-gram Expansion (Bigrams).

G2

(
tok(s)

)
=
(
(the, quick), (quick, brown), (brown, fox), . . . , (lazy, dog)

)
The length is m− 1 = 8.

38/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

3-gram Expansion (Trigrams).

G3

(
tok(s)

)
=
(
(the, quick, brown), (quick, brown, fox), . . . , (the, lazy, dog)

)
The length is m− 2 = 7.

39/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

To use n-grams for evaluation, we need to count their occurrences.

Definition (Histogram)
For any sequence z = (z1, . . . , zL), the occurrence count (histogram) function
is:

Histz(u) :=
∣∣{ i ∈ [1, L]Z

∣∣ zi = u }
∣∣

We also define the element-wise minimum (f ∧ h)(u) := min{f(u), h(u)} and
element-wise maximum

(∨
r∈R fr

)
(u) := maxr∈R fr(u).

The 1-norm of a histogram function is the total count:

‖f‖1 :=
∑
u

f(u)

40/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

To use n-grams for evaluation, we need to count their occurrences.

Definition (Histogram)
For any sequence z = (z1, . . . , zL), the occurrence count (histogram) function
is:

Histz(u) :=
∣∣{ i ∈ [1, L]Z

∣∣ zi = u }
∣∣

We also define the element-wise minimum (f ∧ h)(u) := min{f(u), h(u)} and
element-wise maximum

(∨
r∈R fr

)
(u) := maxr∈R fr(u).

The 1-norm of a histogram function is the total count:

‖f‖1 :=
∑
u

f(u)

40/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

To use n-grams for evaluation, we need to count their occurrences.

Definition (Histogram)
For any sequence z = (z1, . . . , zL), the occurrence count (histogram) function
is:

Histz(u) :=
∣∣{ i ∈ [1, L]Z

∣∣ zi = u }
∣∣

We also define the element-wise minimum (f ∧ h)(u) := min{f(u), h(u)} and
element-wise maximum

(∨
r∈R fr

)
(u) := maxr∈R fr(u).

The 1-norm of a histogram function is the total count:

‖f‖1 :=
∑
u

f(u)

40/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

To use n-grams for evaluation, we need to count their occurrences.

Definition (Histogram)
For any sequence z = (z1, . . . , zL), the occurrence count (histogram) function
is:

Histz(u) :=
∣∣{ i ∈ [1, L]Z

∣∣ zi = u }
∣∣

We also define the element-wise minimum (f ∧ h)(u) := min{f(u), h(u)} and
element-wise maximum

(∨
r∈R fr

)
(u) := maxr∈R fr(u).

The 1-norm of a histogram function is the total count:

‖f‖1 :=
∑
u

f(u)

40/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Remark (Intuition)

• n = 1 reflects frequency matching of vocabulary.

• n = 2 reflects local matching of word order.

• a large n reflects matching of long phrases.

A weighted average that mixes different n values measures multiple levels of
fidelity simultaneously.

41/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Remark (Intuition)

• n = 1 reflects frequency matching of vocabulary.

• n = 2 reflects local matching of word order.

• a large n reflects matching of long phrases.

A weighted average that mixes different n values measures multiple levels of
fidelity simultaneously.

41/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Remark (Intuition)

• n = 1 reflects frequency matching of vocabulary.

• n = 2 reflects local matching of word order.

• a large n reflects matching of long phrases.

A weighted average that mixes different n values measures multiple levels of
fidelity simultaneously.

41/95

6.1 Motivation, Rigorous Definition, and Intuition of n-grams

Remark (Intuition)

• n = 1 reflects frequency matching of vocabulary.

• n = 2 reflects local matching of word order.

• a large n reflects matching of long phrases.

A weighted average that mixes different n values measures multiple levels of
fidelity simultaneously.

41/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Input/Output Format. Context C, question Q, set of correct short answers
Y = {y(1), . . . ,y(m)}. The model’s output is a text sequence ŷ.

Example (SQuAD v1.1 Data Example [9])

Context snippet: In cpDNA, there are several A → G deamination gradients.
DNA becomes susceptible... Question: How does the secondary theory say
most cpDNA is structured? Gold answer text(s): [linear, linear, linear]

42/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Motivation for Introduction.

In span extraction QA, even if the strings do not match perfectly, they are often
nearly identical at the word level.

Simple EM (exact match) is too strict, so Token-level F1, which gives points for
partial matches, is used in conjunction.

43/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Motivation for Introduction.

In span extraction QA, even if the strings do not match perfectly, they are often
nearly identical at the word level.

Simple EM (exact match) is too strict, so Token-level F1, which gives points for
partial matches, is used in conjunction.

43/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Definition (Rigorous Definition of EM and F1)

Fix a string normalization function norm. Exact Match (EM) is the maximum
score over all references:

EM(ŷ,Y) := max
y∈Y

1
[
norm(ŷ) = norm(y)

]
. (11)

Using unigram (n = 1) histograms, we define token-level precision, recall, and F1
for a single reference y:

Prec(ŷ,y) =

∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1∥∥Histtok(ŷ) ∥∥1 , (12)

Rec(ŷ,y) =

∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1∥∥Histtok(y) ∥∥1 , (13)

F1(ŷ,y) =
2Prec · Rec
Prec + Rec

. (14)

The final F1 score is the maximum F1 over all references in Y.

44/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Definition (Rigorous Definition of EM and F1)

Fix a string normalization function norm. Exact Match (EM) is the maximum
score over all references:

EM(ŷ,Y) := max
y∈Y

1
[
norm(ŷ) = norm(y)

]
. (11)

Using unigram (n = 1) histograms, we define token-level precision, recall, and F1
for a single reference y:

Prec(ŷ,y) =

∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1∥∥Histtok(ŷ) ∥∥1 , (12)

Rec(ŷ,y) =

∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1∥∥Histtok(y) ∥∥1 , (13)

F1(ŷ,y) =
2Prec · Rec
Prec + Rec

. (14)

The final F1 score is the maximum F1 over all references in Y.

44/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Example (Manual Calculation of SQuAD-style F1)

Setting:

• Predicted answer: ŷ = “the red apple”

• Reference answer: y = “red apple”

• (Assume strings are already normalized, tokenizer is space-splitting)

45/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 1: Unigram Histograms

• Prediction ŷ tokens: (the, red, apple)

Histtok(ŷ) : {the, red, apple} 7→ {1, 1, 1}

Total predicted tokens: ‖Histtok(ŷ)‖1 = 3.

• Reference y tokens: (red, apple)

Histtok(y) : {red, apple} 7→ {1, 1}

Total reference tokens: ‖Histtok(y)‖1 = 2.

46/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 1: Unigram Histograms

• Prediction ŷ tokens: (the, red, apple)

Histtok(ŷ) : {the, red, apple} 7→ {1, 1, 1}

Total predicted tokens: ‖Histtok(ŷ)‖1 = 3.

• Reference y tokens: (red, apple)

Histtok(y) : {red, apple} 7→ {1, 1}

Total reference tokens: ‖Histtok(y)‖1 = 2.

46/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 2: Element-wise Minimum (Common Tokens)

We find the minimum count for each token across both histograms.

• min(Histŷ(red), Histy(red)) = min(1, 1) = 1

• min(Histŷ(apple), Histy(apple)) = min(1, 1) = 1

• min(Histŷ(the), Histy(the)) = min(1, 0) = 0

The total number of common tokens is the sum of these minimums:∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1
= 1 + 1 + 0 = 2.

47/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 2: Element-wise Minimum (Common Tokens)

We find the minimum count for each token across both histograms.

• min(Histŷ(red), Histy(red)) = min(1, 1) = 1

• min(Histŷ(apple), Histy(apple)) = min(1, 1) = 1

• min(Histŷ(the), Histy(the)) = min(1, 0) = 0

The total number of common tokens is the sum of these minimums:∥∥Histtok(ŷ) ∧ Histtok(y)
∥∥
1
= 1 + 1 + 0 = 2.

47/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 3: Calculate Precision, Recall, and F1

• Precision = (Common Tokens) / (Total Predicted Tokens)

Prec =
2

3

• Recall = (Common Tokens) / (Total Reference Tokens)

Rec =
2

2
= 1

• F1 Score = 2 · Prec·Rec
Prec+Rec

F1 =
2 · (2/3) · 1
(2/3) + 1

=
4/3

5/3
= 0.8.

48/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 3: Calculate Precision, Recall, and F1

• Precision = (Common Tokens) / (Total Predicted Tokens)

Prec =
2

3

• Recall = (Common Tokens) / (Total Reference Tokens)

Rec =
2

2
= 1

• F1 Score = 2 · Prec·Rec
Prec+Rec

F1 =
2 · (2/3) · 1
(2/3) + 1

=
4/3

5/3
= 0.8.

48/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Step 3: Calculate Precision, Recall, and F1

• Precision = (Common Tokens) / (Total Predicted Tokens)

Prec =
2

3

• Recall = (Common Tokens) / (Total Reference Tokens)

Rec =
2

2
= 1

• F1 Score = 2 · Prec·Rec
Prec+Rec

F1 =
2 · (2/3) · 1
(2/3) + 1

=
4/3

5/3
= 0.8.

48/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Exercise (EM/F1 Exercise)

Let predicted answer ŷ = “capital of France”, and one reference y = “the capital
of France”. Assume a normalization rule removes articles (like "the") and
lowercases everything. Let the tokenizer be space-splitting. Calculate EM and
F1 step-by-step.

49/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Answer
Normalization and EM: After removing "the" and lowercasing, both strings
become identical:

norm(ŷ) = norm(y) = “capital of france”

Therefore, EM = 1.

F1 Calculation (on original tokens):

• Predicted tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Reference tokens: 4 (‘the‘, ‘capital‘, ‘of‘, ‘france‘).

• Common tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Prec = 3/3 = 1

• Rec = 3/4 = 0.75

• F1 = 2·1·0.75
1+0.75 = 1.5

1.75 ≈ 0.857.

50/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Answer
Normalization and EM: After removing "the" and lowercasing, both strings
become identical:

norm(ŷ) = norm(y) = “capital of france”

Therefore, EM = 1.

F1 Calculation (on original tokens):

• Predicted tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Reference tokens: 4 (‘the‘, ‘capital‘, ‘of‘, ‘france‘).

• Common tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Prec = 3/3 = 1

• Rec = 3/4 = 0.75

• F1 = 2·1·0.75
1+0.75 = 1.5

1.75 ≈ 0.857.

50/95

6.2 QA (SQuAD): Exact Match and Token-level F1

Answer
Normalization and EM: After removing "the" and lowercasing, both strings
become identical:

norm(ŷ) = norm(y) = “capital of france”

Therefore, EM = 1.

F1 Calculation (on original tokens):

• Predicted tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Reference tokens: 4 (‘the‘, ‘capital‘, ‘of‘, ‘france‘).

• Common tokens: 3 (‘capital‘, ‘of‘, ‘france‘).

• Prec = 3/3 = 1

• Rec = 3/4 = 0.75

• F1 = 2·1·0.75
1+0.75 = 1.5

1.75 ≈ 0.857.

50/95

6.3 Machine Translation: BLEU

Input/Output Format. Source sentence x, candidate translation ŷ, and a set of
references R = {y(1), . . . ,y(M)} [7].

Example (WMT14 (en→de) Data Example)

Input (English): It has always taken place.
Output (gold German): Das war schon immer so.

51/95

6.3 Machine Translation: BLEU

Motivation for Introduction.

In translation, there are paraphrases and differences in word order, making
simple accuracy or EM unhelpful.

BLEU aggregates n-gram precisions at multiple levels and also penalizes
outputs that are too short with a brevity penalty.

This measures both fluency and adequacy.

52/95

6.3 Machine Translation: BLEU

Motivation for Introduction.

In translation, there are paraphrases and differences in word order, making
simple accuracy or EM unhelpful.

BLEU aggregates n-gram precisions at multiple levels and also penalizes
outputs that are too short with a brevity penalty.

This measures both fluency and adequacy.

52/95

6.3 Machine Translation: BLEU

Motivation for Introduction.

In translation, there are paraphrases and differences in word order, making
simple accuracy or EM unhelpful.

BLEU aggregates n-gram precisions at multiple levels and also penalizes
outputs that are too short with a brevity penalty.

This measures both fluency and adequacy.

52/95

6.3 Machine Translation: BLEU

Definition (Rigorous Definition of BLEU-N)

The clipped n-gram precision pn is the ratio of candidate n-grams that appear
in any reference, where the count of each candidate n-gram is "clipped" by its
maximum count in any single reference.

pn =

∑
g min

(
Histŷ(g), maxm Histy(m)(g)

)
∑

g Histŷ(g)
(15)

The brevity penalty BP is:

BP =

1 if |ŷ| > r,

exp(1− r/|ŷ|) if |ŷ| ≤ r,
(16)

where r is the length of the closest reference.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(17)

53/95

6.3 Machine Translation: BLEU

Definition (Rigorous Definition of BLEU-N)

The clipped n-gram precision pn is the ratio of candidate n-grams that appear
in any reference, where the count of each candidate n-gram is "clipped" by its
maximum count in any single reference.

pn =

∑
g min

(
Histŷ(g), maxm Histy(m)(g)

)
∑

g Histŷ(g)
(15)

The brevity penalty BP is:

BP =

1 if |ŷ| > r,

exp(1− r/|ŷ|) if |ŷ| ≤ r,
(16)

where r is the length of the closest reference.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(17)

53/95

6.3 Machine Translation: BLEU

Definition (Rigorous Definition of BLEU-N)

The clipped n-gram precision pn is the ratio of candidate n-grams that appear
in any reference, where the count of each candidate n-gram is "clipped" by its
maximum count in any single reference.

pn =

∑
g min

(
Histŷ(g), maxm Histy(m)(g)

)
∑

g Histŷ(g)
(15)

The brevity penalty BP is:

BP =

1 if |ŷ| > r,

exp(1− r/|ŷ|) if |ŷ| ≤ r,
(16)

where r is the length of the closest reference.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(17)

53/95

6.3 Machine Translation: BLEU

Example (Manual Calculation of BLEU-2 (1 reference, Rigorous Procedure))

Setting:

• Reference y = “the cat is on the mat” (length 6)

• Candidate ŷ = “the cat the cat on the mat” (length 7)

• We will calculate BLEU-2, with equal weights w1 = w2 =
1
2 .

54/95

6.3 Machine Translation: BLEU

Unigram Precision (p1):

• Candidate unigrams: ‘the‘: 3, ‘cat‘: 2, ‘on‘: 1, ‘mat‘: 1. Total: 7.
• Reference unigrams: ‘the‘: 2, ‘cat‘: 1, ‘is‘: 1, ‘on‘: 1, ‘mat‘: 1.

Clipping:

• ‘the‘: candidate count is 3, max reference count is 2 =⇒ clipped count is 2.
• ‘cat‘: candidate count is 2, max reference count is 1 =⇒ clipped count is 1.
• ‘on‘: clipped count is 1.
• ‘mat‘: clipped count is 1.

Total clipped count = 2 + 1 + 1 + 1 = 5.

p1 =
Total Clipped Count

Total Candidate Count
=

5

7
.

55/95

6.3 Machine Translation: BLEU

Unigram Precision (p1):

• Candidate unigrams: ‘the‘: 3, ‘cat‘: 2, ‘on‘: 1, ‘mat‘: 1. Total: 7.
• Reference unigrams: ‘the‘: 2, ‘cat‘: 1, ‘is‘: 1, ‘on‘: 1, ‘mat‘: 1.

Clipping:

• ‘the‘: candidate count is 3, max reference count is 2 =⇒ clipped count is 2.
• ‘cat‘: candidate count is 2, max reference count is 1 =⇒ clipped count is 1.
• ‘on‘: clipped count is 1.
• ‘mat‘: clipped count is 1.

Total clipped count = 2 + 1 + 1 + 1 = 5.

p1 =
Total Clipped Count

Total Candidate Count
=

5

7
.

55/95

6.3 Machine Translation: BLEU

Unigram Precision (p1):

• Candidate unigrams: ‘the‘: 3, ‘cat‘: 2, ‘on‘: 1, ‘mat‘: 1. Total: 7.
• Reference unigrams: ‘the‘: 2, ‘cat‘: 1, ‘is‘: 1, ‘on‘: 1, ‘mat‘: 1.

Clipping:

• ‘the‘: candidate count is 3, max reference count is 2 =⇒ clipped count is 2.
• ‘cat‘: candidate count is 2, max reference count is 1 =⇒ clipped count is 1.
• ‘on‘: clipped count is 1.
• ‘mat‘: clipped count is 1.

Total clipped count = 2 + 1 + 1 + 1 = 5.

p1 =
Total Clipped Count

Total Candidate Count
=

5

7
.

55/95

6.3 Machine Translation: BLEU

Bigram Precision (p2):

• Candidate bigrams: ‘the cat‘ (2), ‘cat the‘ (1), ‘cat on‘ (1), ‘on the‘ (1), ‘the mat‘
(1). Total: 6.

• Reference bigrams: ‘the cat‘ (1), ‘cat is‘ (1), ‘is on‘ (1), ‘on the‘ (1), ‘the mat‘
(1).

Clipping:

• ‘the cat‘: candidate count 2, reference 1 =⇒ clipped count 1.
• ‘on the‘: candidate count 1, reference 1 =⇒ clipped count 1.
• ‘the mat‘: candidate count 1, reference 1 =⇒ clipped count 1.
• Other candidate bigrams don’t appear in the reference, so their clipped count

is 0.

Total clipped count = 1 + 1 + 1 = 3.

p2 =
Total Clipped Count

Total Candidate Count
=

3

6
= 0.5.

56/95

6.3 Machine Translation: BLEU

Bigram Precision (p2):

• Candidate bigrams: ‘the cat‘ (2), ‘cat the‘ (1), ‘cat on‘ (1), ‘on the‘ (1), ‘the mat‘
(1). Total: 6.

• Reference bigrams: ‘the cat‘ (1), ‘cat is‘ (1), ‘is on‘ (1), ‘on the‘ (1), ‘the mat‘
(1).

Clipping:

• ‘the cat‘: candidate count 2, reference 1 =⇒ clipped count 1.
• ‘on the‘: candidate count 1, reference 1 =⇒ clipped count 1.
• ‘the mat‘: candidate count 1, reference 1 =⇒ clipped count 1.
• Other candidate bigrams don’t appear in the reference, so their clipped count

is 0.

Total clipped count = 1 + 1 + 1 = 3.

p2 =
Total Clipped Count

Total Candidate Count
=

3

6
= 0.5.

56/95

6.3 Machine Translation: BLEU

Bigram Precision (p2):

• Candidate bigrams: ‘the cat‘ (2), ‘cat the‘ (1), ‘cat on‘ (1), ‘on the‘ (1), ‘the mat‘
(1). Total: 6.

• Reference bigrams: ‘the cat‘ (1), ‘cat is‘ (1), ‘is on‘ (1), ‘on the‘ (1), ‘the mat‘
(1).

Clipping:

• ‘the cat‘: candidate count 2, reference 1 =⇒ clipped count 1.
• ‘on the‘: candidate count 1, reference 1 =⇒ clipped count 1.
• ‘the mat‘: candidate count 1, reference 1 =⇒ clipped count 1.
• Other candidate bigrams don’t appear in the reference, so their clipped count

is 0.

Total clipped count = 1 + 1 + 1 = 3.

p2 =
Total Clipped Count

Total Candidate Count
=

3

6
= 0.5.

56/95

6.3 Machine Translation: BLEU

Brevity Penalty (BP) and Final Score:

• Candidate length |ŷ| = 7.

• Reference length r = |y| = 6.

• Since |ŷ| > r, the brevity penalty is BP = 1.

Final BLEU-2 Score:

BLEU-2 = BP · exp(w1 log p1 + w2 log p2)

= 1 · exp
(
1
2 log

5
7 + 1

2 log
1
2

)
=

√
5

7
× 1

2
=

√
5

14
≈ 0.5976.

57/95

6.3 Machine Translation: BLEU

Brevity Penalty (BP) and Final Score:

• Candidate length |ŷ| = 7.

• Reference length r = |y| = 6.

• Since |ŷ| > r, the brevity penalty is BP = 1.

Final BLEU-2 Score:

BLEU-2 = BP · exp(w1 log p1 + w2 log p2)

= 1 · exp
(
1
2 log

5
7 + 1

2 log
1
2

)
=

√
5

7
× 1

2
=

√
5

14
≈ 0.5976.

57/95

6.3 Machine Translation: BLEU

Exercise (BLEU-1 Exercise)

Let reference y: “a b c d” (length 4), and candidate ŷ: “a c e” (length 3). Calculate
BLEU-1 (which only uses unigrams) including the brevity penalty, step-by-step.

58/95

6.3 Machine Translation: BLEU

Answer
Unigram Precision (p1):

• Candidate unigrams: {a, c, e}. Total: 3.

• Reference unigrams: {a, b, c, d}.

• Common unigrams are {a, c}. Total clipped count: 2.

• p1 = 2/3.

Brevity Penalty (BP):

• Candidate length |ŷ| = 3. Reference length r = 4.

• Since 3 ≤ 4, BP = exp(1− 4/3) = exp(−1/3).

Final Score:

• BLEU-1 = BP · p1 = exp(−1/3) · 2
3 ≈ 0.7165× 0.6667 ≈ 0.478.

59/95

6.3 Machine Translation: BLEU

Answer
Unigram Precision (p1):

• Candidate unigrams: {a, c, e}. Total: 3.

• Reference unigrams: {a, b, c, d}.

• Common unigrams are {a, c}. Total clipped count: 2.

• p1 = 2/3.

Brevity Penalty (BP):

• Candidate length |ŷ| = 3. Reference length r = 4.

• Since 3 ≤ 4, BP = exp(1− 4/3) = exp(−1/3).

Final Score:

• BLEU-1 = BP · p1 = exp(−1/3) · 2
3 ≈ 0.7165× 0.6667 ≈ 0.478.

59/95

6.3 Machine Translation: BLEU

Answer
Unigram Precision (p1):

• Candidate unigrams: {a, c, e}. Total: 3.

• Reference unigrams: {a, b, c, d}.

• Common unigrams are {a, c}. Total clipped count: 2.

• p1 = 2/3.

Brevity Penalty (BP):

• Candidate length |ŷ| = 3. Reference length r = 4.

• Since 3 ≤ 4, BP = exp(1− 4/3) = exp(−1/3).

Final Score:

• BLEU-1 = BP · p1 = exp(−1/3) · 2
3 ≈ 0.7165× 0.6667 ≈ 0.478.

59/95

6.4 Machine Translation: chrF

Input/Output Format. Candidate ŷ, reference y (based on character
n-grams) [8].

Motivation for Introduction.

For morphologically rich languages or in situations with unstable tokenization,
word-level n-grams are not robust.

chrF, based on character n-grams, is robust to spelling differences and
inflectional changes, capturing fine-grained matches.

60/95

6.4 Machine Translation: chrF

Input/Output Format. Candidate ŷ, reference y (based on character
n-grams) [8].

Motivation for Introduction.

For morphologically rich languages or in situations with unstable tokenization,
word-level n-grams are not robust.

chrF, based on character n-grams, is robust to spelling differences and
inflectional changes, capturing fine-grained matches.

60/95

6.4 Machine Translation: chrF

Input/Output Format. Candidate ŷ, reference y (based on character
n-grams) [8].

Motivation for Introduction.

For morphologically rich languages or in situations with unstable tokenization,
word-level n-grams are not robust.

chrF, based on character n-grams, is robust to spelling differences and
inflectional changes, capturing fine-grained matches.

60/95

6.4 Machine Translation: chrF

Definition (Rigorous Definition of chrF)

Based on character n-grams (for n = 1, . . . , Nc), we define micro-averaged
precision and recall:

Precchr =

∑Nc
n=1(common char n-grams)∑Nc
n=1(candidate char n-grams)

(18)

Recchr =

∑Nc
n=1(common char n-grams)∑Nc
n=1(reference char n-grams)

(19)

Then, for a parameter β > 0, we define the F-score:

chrFβ =
(1 + β2) Precchr · Recchr

Recchr + β2Precchr
(20)

Typically, Nc = 6, β = 2 are used (weighting recall more heavily).

61/95

6.4 Machine Translation: chrF

Definition (Rigorous Definition of chrF)

Based on character n-grams (for n = 1, . . . , Nc), we define micro-averaged
precision and recall:

Precchr =

∑Nc
n=1(common char n-grams)∑Nc
n=1(candidate char n-grams)

(18)

Recchr =

∑Nc
n=1(common char n-grams)∑Nc
n=1(reference char n-grams)

(19)

Then, for a parameter β > 0, we define the F-score:

chrFβ =
(1 + β2) Precchr · Recchr

Recchr + β2Precchr
(20)

Typically, Nc = 6, β = 2 are used (weighting recall more heavily). 61/95

6.4 Machine Translation: chrF

Example (Complete Manual Calculation of chrFβ=2 (Nc = 3, Rigorous
Procedure))

Setting:

• Reference: y = “color”

• Candidate: ŷ = “colour”

• We will use character n-grams up to Nc = 3, and β = 2.

62/95

6.4 Machine Translation: chrF

Step 1: Count n-grams and common n-grams

• n = 1:
• y: (c,o,l,o,r). Total 5.
• ŷ: (c,o,l,o,u,r). Total 6.
• Common: (c,o,l,o,r). Total 5.

• n = 2:
• y: {co,ol,lo,or}. Total 4.
• ŷ: {co,ol,lo,ou,ur}. Total 5.
• Common: {co,ol,lo}. Total 3.

• n = 3:
• y: {col,olo,lor}. Total 3.
• ŷ: {col,olo,lou,our}. Total 4.
• Common: {col,olo}. Total 2.

63/95

6.4 Machine Translation: chrF

Step 2: Micro-average to get Precision and Recall

• Total common n-grams = 5 + 3 + 2 = 10.

• Total candidate n-grams = 6 + 5 + 4 = 15.

• Total reference n-grams = 5 + 4 + 3 = 12.

Precchr =
Total common
Total candidate

=
10

15
= 2

3

Recchr =
Total common
Total reference

=
10

12
= 5

6

64/95

6.4 Machine Translation: chrF

Step 2: Micro-average to get Precision and Recall

• Total common n-grams = 5 + 3 + 2 = 10.

• Total candidate n-grams = 6 + 5 + 4 = 15.

• Total reference n-grams = 5 + 4 + 3 = 12.

Precchr =
Total common
Total candidate

=
10

15
= 2

3

Recchr =
Total common
Total reference

=
10

12
= 5

6

64/95

6.4 Machine Translation: chrF

Step 3: Calculate the Final F-score

Using β = 2, Precchr = 2/3, and Recchr = 5/6:

chrFβ=2 =
(1 + 22) · Prec · Rec
Rec + 22 · Prec

=
(1 + 4) · (2/3) · (5/6)
(5/6) + 4 · (2/3)

=
5 · (10/18)

(5/6) + (8/3)
=

50/18

21/6

=
25/9

7/2
=

50

63
≈ 0.794.

65/95

6.4 Machine Translation: chrF

Exercise (chrFβ=2 Exercise (Nc = 3))

Let reference y = “center” and candidate ŷ = “centre”. Using Nc = 3 and β = 2,
calculate chrFβ=2 step-by-step.

66/95

6.4 Machine Translation: chrF

Answer
n-gram Counts:

• n = 1: common 6, candidate 6, reference 6.

• n = 2: common 3, candidate 5, reference 5.

• n = 3: common 2, candidate 4, reference 4.

Micro-averaging:

• Total common = 6 + 3 + 2 = 11.

• Total candidate = 6 + 5 + 4 = 15.

• Total reference = 6 + 5 + 4 = 15.

• Precchr = Recchr = 11/15.

Final Score: When Prec = Rec, the F-score is equal to precision and recall.

chrFβ=2 =
11

15
≈ 0.733.

67/95

6.4 Machine Translation: chrF

Answer
n-gram Counts:

• n = 1: common 6, candidate 6, reference 6.

• n = 2: common 3, candidate 5, reference 5.

• n = 3: common 2, candidate 4, reference 4.

Micro-averaging:

• Total common = 6 + 3 + 2 = 11.

• Total candidate = 6 + 5 + 4 = 15.

• Total reference = 6 + 5 + 4 = 15.

• Precchr = Recchr = 11/15.

Final Score: When Prec = Rec, the F-score is equal to precision and recall.

chrFβ=2 =
11

15
≈ 0.733.

67/95

6.4 Machine Translation: chrF

Answer
n-gram Counts:

• n = 1: common 6, candidate 6, reference 6.

• n = 2: common 3, candidate 5, reference 5.

• n = 3: common 2, candidate 4, reference 4.

Micro-averaging:

• Total common = 6 + 3 + 2 = 11.

• Total candidate = 6 + 5 + 4 = 15.

• Total reference = 6 + 5 + 4 = 15.

• Precchr = Recchr = 11/15.

Final Score: When Prec = Rec, the F-score is equal to precision and recall.

chrFβ=2 =
11

15
≈ 0.733.

67/95

6.5 Lexical Semantic Similarity: BERTScore

Input/Output Format. Candidate ŷ and reference y are tokenized, and each
token is mapped to a vector embedding from a pre-trained language model [11].

Motivation for Introduction.

n-gram based methods cannot sufficiently capture synonyms and paraphrases.

BERTScore measures the semantic consistency between the candidate and
reference using similarity in a continuous vector space, enabling an evaluation
that does not depend on superficial lexical matching.

68/95

6.5 Lexical Semantic Similarity: BERTScore

Input/Output Format. Candidate ŷ and reference y are tokenized, and each
token is mapped to a vector embedding from a pre-trained language model [11].

Motivation for Introduction.

n-gram based methods cannot sufficiently capture synonyms and paraphrases.

BERTScore measures the semantic consistency between the candidate and
reference using similarity in a continuous vector space, enabling an evaluation
that does not depend on superficial lexical matching.

68/95

6.5 Lexical Semantic Similarity: BERTScore

Input/Output Format. Candidate ŷ and reference y are tokenized, and each
token is mapped to a vector embedding from a pre-trained language model [11].

Motivation for Introduction.

n-gram based methods cannot sufficiently capture synonyms and paraphrases.

BERTScore measures the semantic consistency between the candidate and
reference using similarity in a continuous vector space, enabling an evaluation
that does not depend on superficial lexical matching.

68/95

6.5 Lexical Semantic Similarity: BERTScore

However, when considering the average similarity, the behavior of frequent but
semantically unimportant words can become too dominant.

IDF weighting emphasizes information-rich words and relatively reduces the
contribution of common words.
Definition (Inverse Document Frequency (IDF))

Let D be a collection of documents. The inverse document frequency for a
token u is:

idfD(u) := log

(
|D|+ 1

dfD(u) + 1

)
where dfD(u) is the number of documents in D containing token u.

69/95

6.5 Lexical Semantic Similarity: BERTScore

However, when considering the average similarity, the behavior of frequent but
semantically unimportant words can become too dominant.

IDF weighting emphasizes information-rich words and relatively reduces the
contribution of common words.

Definition (Inverse Document Frequency (IDF))

Let D be a collection of documents. The inverse document frequency for a
token u is:

idfD(u) := log

(
|D|+ 1

dfD(u) + 1

)
where dfD(u) is the number of documents in D containing token u.

69/95

6.5 Lexical Semantic Similarity: BERTScore

However, when considering the average similarity, the behavior of frequent but
semantically unimportant words can become too dominant.

IDF weighting emphasizes information-rich words and relatively reduces the
contribution of common words.
Definition (Inverse Document Frequency (IDF))

Let D be a collection of documents. The inverse document frequency for a
token u is:

idfD(u) := log

(
|D|+ 1

dfD(u) + 1

)
where dfD(u) is the number of documents in D containing token u.

69/95

6.5 Lexical Semantic Similarity: BERTScore

Definition (Complete Rigorous Definition of BERTScore (F1))

Let the token embeddings for the candidate be {h̃i} and for the reference be
{g̃j} (normalized to unit length).

The similarity matrix is si,j := h̃
⊤
i g̃j . The

precision and recall are calculated as IDF-weighted sums of maximal similarities:

PrecBERT =

∑
i idf(ŵi) ·maxj si,j∑

i idf(ŵi)
(21)

RecBERT =

∑
j idf(wj) ·maxi si,j∑

j idf(wj)
(22)

F1 Aggregation: F1BERT =
2PrecBERT · RecBERT

PrecBERT +RecBERT
.

70/95

6.5 Lexical Semantic Similarity: BERTScore

Definition (Complete Rigorous Definition of BERTScore (F1))

Let the token embeddings for the candidate be {h̃i} and for the reference be
{g̃j} (normalized to unit length). The similarity matrix is si,j := h̃

⊤
i g̃j .

The
precision and recall are calculated as IDF-weighted sums of maximal similarities:

PrecBERT =

∑
i idf(ŵi) ·maxj si,j∑

i idf(ŵi)
(21)

RecBERT =

∑
j idf(wj) ·maxi si,j∑

j idf(wj)
(22)

F1 Aggregation: F1BERT =
2PrecBERT · RecBERT

PrecBERT +RecBERT
.

70/95

6.5 Lexical Semantic Similarity: BERTScore

Definition (Complete Rigorous Definition of BERTScore (F1))

Let the token embeddings for the candidate be {h̃i} and for the reference be
{g̃j} (normalized to unit length). The similarity matrix is si,j := h̃

⊤
i g̃j . The

precision and recall are calculated as IDF-weighted sums of maximal similarities:

PrecBERT =

∑
i idf(ŵi) ·maxj si,j∑

i idf(ŵi)
(21)

RecBERT =

∑
j idf(wj) ·maxi si,j∑

j idf(wj)
(22)

F1 Aggregation: F1BERT =
2PrecBERT · RecBERT

PrecBERT +RecBERT
.

70/95

6.5 Lexical Semantic Similarity: BERTScore

Definition (Complete Rigorous Definition of BERTScore (F1))

Let the token embeddings for the candidate be {h̃i} and for the reference be
{g̃j} (normalized to unit length). The similarity matrix is si,j := h̃

⊤
i g̃j . The

precision and recall are calculated as IDF-weighted sums of maximal similarities:

PrecBERT =

∑
i idf(ŵi) ·maxj si,j∑

i idf(ŵi)
(21)

RecBERT =

∑
j idf(wj) ·maxi si,j∑

j idf(wj)
(22)

F1 Aggregation: F1BERT =
2PrecBERT · RecBERT

PrecBERT +RecBERT
.

70/95

6.5 Lexical Semantic Similarity: BERTScore

Example (Complete Manual Calculation of BERTScore (F1))

Setting:

• Reference y = “red apple”

• Candidate ŷ = “the red apples”

• IDF is disabled for simplicity (ui = vj ≡ 1).

• Word embeddings (already ℓ2-normalized) are given as:

the = (0, 0, 1)

red = (1, 0, 0)

apple = (0, 1, 0)

apples = (0, 0.8, 0.6)

71/95

6.5 Lexical Semantic Similarity: BERTScore

Step 1: Similarity Matrix si,j (rows: candidate, columns: reference):

The similarity is the dot product of the normalized vectors.

red (1, 0, 0) apple (0, 1, 0)

the (0, 0, 1) 0 0
red (1, 0, 0) 1 0

apples (0, 0.8, 0.6) 0 0.8

72/95

6.5 Lexical Semantic Similarity: BERTScore

Step 2: Precision

For each candidate token (row), find its maximum similarity with any reference
token (column). Then average these maximums.

red apple maxj si,j

the 0 0 0
red 1 0 1

apples 0 0.8 0.8

PrecBERT =
0 + 1 + 0.8

3
= 0.6.

73/95

6.5 Lexical Semantic Similarity: BERTScore

Step 3: Recall

For each reference token (column), find its maximum similarity with any candidate
token (row). Then average these maximums.

red apple

the 0 0
red 1 0

apples 0 0.8
maxi si,j 1 0.8

RecBERT =
1 + 0.8

2
= 0.9.

74/95

6.5 Lexical Semantic Similarity: BERTScore

Step 4: F1 Score

Now we calculate the harmonic mean of Precision and Recall.

F1BERT =
2 · Prec · Rec
Prec + Rec

=
2 · 0.6 · 0.9
0.6 + 0.9

=
1.08

1.5
= 0.72.

75/95

6.5 Lexical Semantic Similarity: BERTScore

Exercise (BERTScore (F1) Exercise)

Given word embeddings (normalized) as:

fast = (1, 0, 0)

car = (0, 1, 0)

quick = (0.9, 0.1, 0)

automobile = (0, 1/
√
2, 1/

√
2)

Let reference y = “fast car” and candidate ŷ = “quick automobile”. IDF is
disabled. Calculate BERTScore (F1) step-by-step.

76/95

6.5 Lexical Semantic Similarity: BERTScore

Answer
Similarity Matrix si,j :

fast car

quick 0.9 0.1
automobile 0 1/

√
2 ≈ 0.707

Precision (avg of row maxes):

Prec =
max(0.9, 0.1) + max(0, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

Recall (avg of col maxes):

Rec =
max(0.9, 0) + max(0.1, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

F1: Since Prec = Rec, F1BERT = Prec = Rec ≈ 0.8036.

77/95

6.5 Lexical Semantic Similarity: BERTScore

Answer
Similarity Matrix si,j :

fast car

quick 0.9 0.1
automobile 0 1/

√
2 ≈ 0.707

Precision (avg of row maxes):

Prec =
max(0.9, 0.1) + max(0, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

Recall (avg of col maxes):

Rec =
max(0.9, 0) + max(0.1, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

F1: Since Prec = Rec, F1BERT = Prec = Rec ≈ 0.8036.

77/95

6.5 Lexical Semantic Similarity: BERTScore

Answer
Similarity Matrix si,j :

fast car

quick 0.9 0.1
automobile 0 1/

√
2 ≈ 0.707

Precision (avg of row maxes):

Prec =
max(0.9, 0.1) + max(0, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

Recall (avg of col maxes):

Rec =
max(0.9, 0) + max(0.1, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

F1: Since Prec = Rec, F1BERT = Prec = Rec ≈ 0.8036.

77/95

6.5 Lexical Semantic Similarity: BERTScore

Answer
Similarity Matrix si,j :

fast car

quick 0.9 0.1
automobile 0 1/

√
2 ≈ 0.707

Precision (avg of row maxes):

Prec =
max(0.9, 0.1) + max(0, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

Recall (avg of col maxes):

Rec =
max(0.9, 0) + max(0.1, 1/

√
2)

2
=

0.9 + 1/
√
2

2
≈ 0.8036.

F1: Since Prec = Rec, F1BERT = Prec = Rec ≈ 0.8036.

77/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Input/Output Format. Candidate summary ŷ, reference y [4].

Example (XSum Summarization Data Example)

Input (article snippet): The 29-year-old committed two fouls but jumped 7.90m
with his last effort to go through as the 10th of 12 qualifiers... Output (gold
summary): Great Britain’s Greg Rutherford sneaked into Saturday’s long jump
final to maintain his hopes of defending his Olympic crown.

78/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Motivation for Introduction.

In summarization, both content selection and word order preservation are
important.

ROUGE-L, based on the Longest Common Subsequence (LCS), evaluates
consistency that cannot be measured solely by the number of overlapping words,
while gently respecting word order.

79/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Motivation for Introduction.

In summarization, both content selection and word order preservation are
important.

ROUGE-L, based on the Longest Common Subsequence (LCS), evaluates
consistency that cannot be measured solely by the number of overlapping words,
while gently respecting word order.

79/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Definition (Rigorous Definition of ROUGE-L F1)

Let LCS(ŷ,y) be the length of the longest common subsequence of the tokens
in ŷ and y.

Then, we define precision and recall based on this length:

Prec =
LCS(ŷ,y)

|ŷ|
(num tokens in candidate) (23)

Rec =
LCS(ŷ,y)

|y|
(num tokens in reference) (24)

The ROUGE-L score is the F-score of these values (typically with β = 1):

ROUGE-L =
(1 + β2) Prec · Rec

Rec + β2Prec
(25)

80/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Definition (Rigorous Definition of ROUGE-L F1)

Let LCS(ŷ,y) be the length of the longest common subsequence of the tokens
in ŷ and y. Then, we define precision and recall based on this length:

Prec =
LCS(ŷ,y)

|ŷ|
(num tokens in candidate) (23)

Rec =
LCS(ŷ,y)

|y|
(num tokens in reference) (24)

The ROUGE-L score is the F-score of these values (typically with β = 1):

ROUGE-L =
(1 + β2) Prec · Rec

Rec + β2Prec
(25)

80/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Definition (Rigorous Definition of ROUGE-L F1)

Let LCS(ŷ,y) be the length of the longest common subsequence of the tokens
in ŷ and y. Then, we define precision and recall based on this length:

Prec =
LCS(ŷ,y)

|ŷ|
(num tokens in candidate) (23)

Rec =
LCS(ŷ,y)

|y|
(num tokens in reference) (24)

The ROUGE-L score is the F-score of these values (typically with β = 1):

ROUGE-L =
(1 + β2) Prec · Rec

Rec + β2Prec
(25)

80/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Example (Step-by-Step Calculation of ROUGE-L)

Setting:

• Reference y = “the quick brown fox” (4 tokens)

• Candidate ŷ=“quick brown fox” (3 tokens)

LCS: The longest common subsequence is “quick brown fox”. Its length is
LCS = 3.

Calculation (β = 1):

Prec =
3

3
= 1

Rec =
3

4
= 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

81/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Example (Step-by-Step Calculation of ROUGE-L)

Setting:

• Reference y = “the quick brown fox” (4 tokens)

• Candidate ŷ=“quick brown fox” (3 tokens)

LCS: The longest common subsequence is “quick brown fox”. Its length is
LCS = 3.

Calculation (β = 1):

Prec =
3

3
= 1

Rec =
3

4
= 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

81/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Example (Step-by-Step Calculation of ROUGE-L)

Setting:

• Reference y = “the quick brown fox” (4 tokens)

• Candidate ŷ=“quick brown fox” (3 tokens)

LCS: The longest common subsequence is “quick brown fox”. Its length is
LCS = 3.

Calculation (β = 1):

Prec =
3

3
= 1

Rec =
3

4
= 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

81/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Exercise (LCS Exercise)

Let reference y = “a b c d” and candidate ŷ = “a c d”. Calculate ROUGE-L (F1)
step-by-step.

82/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Answer
LCS:

• The longest common subsequence is “a c d”.

• Its length is LCS = 3.

Lengths:

• Candidate length |ŷ| = 3.

• Reference length |y| = 4.

Metric Calculation (β = 1):

Prec = 3/3 = 1

Rec = 3/4 = 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

83/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Answer
LCS:

• The longest common subsequence is “a c d”.

• Its length is LCS = 3.

Lengths:

• Candidate length |ŷ| = 3.

• Reference length |y| = 4.

Metric Calculation (β = 1):

Prec = 3/3 = 1

Rec = 3/4 = 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

83/95

6.6 Summarization: ROUGE-L (Longest Common Subsequence)

Answer
LCS:

• The longest common subsequence is “a c d”.

• Its length is LCS = 3.

Lengths:

• Candidate length |ŷ| = 3.

• Reference length |y| = 4.

Metric Calculation (β = 1):

Prec = 3/3 = 1

Rec = 3/4 = 0.75

F1 =
2 · 1 · 0.75
1 + 0.75

=
1.5

1.75
≈ 0.857.

83/95

6.7 Math QA (GSM8K): Numeric Accuracy

Input/Output Format. A natural language problem statement q and a numerical
correct answer y ∈ R (or a stringified number) [2].

Example (GSM8K Data Example)

Question: Jared is trying to increase his typing speed. He starts with 47 words
per minute... what will be the average of the three measurements?
Gold numeric answer: 52

84/95

6.7 Math QA (GSM8K): Numeric Accuracy

Motivation for Introduction.

In numerical response tasks, there are variations in notation (digit separators,
decimal points, units).

Instead of string matching, we determine if they are numerically equivalent by
defining numerical normalization before calculating accuracy.

85/95

6.7 Math QA (GSM8K): Numeric Accuracy

Motivation for Introduction.

In numerical response tasks, there are variations in notation (digit separators,
decimal points, units).

Instead of string matching, we determine if they are numerically equivalent by
defining numerical normalization before calculating accuracy.

85/95

6.7 Math QA (GSM8K): Numeric Accuracy

Definition (Rigorous Definition of Numeric Accuracy)

Fix a numeric normalization function num : Str ∪ R → R.

This function converts
various string representations of numbers (including fractions, percentages,
units, etc.) into a canonical real number format. For N questions, the accuracy is
simply the fraction of questions where the normalized prediction matches the
normalized correct answer:

Accuracy :=
1

N

N∑
j=1

1
[
num(ŷj) = num(yj)

]
(26)

86/95

6.7 Math QA (GSM8K): Numeric Accuracy

Definition (Rigorous Definition of Numeric Accuracy)

Fix a numeric normalization function num : Str ∪ R → R. This function converts
various string representations of numbers (including fractions, percentages,
units, etc.) into a canonical real number format.

For N questions, the accuracy is
simply the fraction of questions where the normalized prediction matches the
normalized correct answer:

Accuracy :=
1

N

N∑
j=1

1
[
num(ŷj) = num(yj)

]
(26)

86/95

6.7 Math QA (GSM8K): Numeric Accuracy

Definition (Rigorous Definition of Numeric Accuracy)

Fix a numeric normalization function num : Str ∪ R → R. This function converts
various string representations of numbers (including fractions, percentages,
units, etc.) into a canonical real number format. For N questions, the accuracy is
simply the fraction of questions where the normalized prediction matches the
normalized correct answer:

Accuracy :=
1

N

N∑
j=1

1
[
num(ŷj) = num(yj)

]
(26)

86/95

6.7 Math QA (GSM8K): Numeric Accuracy

Example (Normalization without decimals or units)

Setting:

• Gold answer: y = 3.5

• Predicted answer: ŷ = “3.5000”

Normalization:

• num(3.5) = 3.5

• num(“3.5000”) = 3.5 (e.g., remove trailing zeros and convert to float)

Judgment: Since 3.5 = 3.5, it is a correct answer.

87/95

6.7 Math QA (GSM8K): Numeric Accuracy

Example (Normalization without decimals or units)

Setting:

• Gold answer: y = 3.5

• Predicted answer: ŷ = “3.5000”

Normalization:

• num(3.5) = 3.5

• num(“3.5000”) = 3.5 (e.g., remove trailing zeros and convert to float)

Judgment: Since 3.5 = 3.5, it is a correct answer.

87/95

6.7 Math QA (GSM8K): Numeric Accuracy

Example (Normalization without decimals or units)

Setting:

• Gold answer: y = 3.5

• Predicted answer: ŷ = “3.5000”

Normalization:

• num(3.5) = 3.5

• num(“3.5000”) = 3.5 (e.g., remove trailing zeros and convert to float)

Judgment: Since 3.5 = 3.5, it is a correct answer.

87/95

6.7 Math QA (GSM8K): Numeric Accuracy

Exercise (Unit Normalization Exercise)

Let the gold answer be y = 100 (meters), and the predicted answer be
ŷ = “0.1 km”. Assume the normalization function num converts everything to SI
base units (meters). Show the accuracy judgment with a step-by-step calculation.

88/95

6.7 Math QA (GSM8K): Numeric Accuracy

Answer
Normalization:

• The gold answer is already in the base unit: num(y) = 100.

• The predicted answer needs conversion:
num(ŷ) = num(“0.1 km”) = 0.1× 1000 = 100.

Judgment:

• We compare the normalized real numbers: 100 = 100.

• The equality holds, so 1[num(ŷ) = num(y)] = 1.

• The accuracy for this single question is 1.

89/95

6.7 Math QA (GSM8K): Numeric Accuracy

Answer
Normalization:

• The gold answer is already in the base unit: num(y) = 100.

• The predicted answer needs conversion:
num(ŷ) = num(“0.1 km”) = 0.1× 1000 = 100.

Judgment:

• We compare the normalized real numbers: 100 = 100.

• The equality holds, so 1[num(ŷ) = num(y)] = 1.

• The accuracy for this single question is 1.

89/95

Summary

7. Summary

Let’s summarize the key points corresponding to the learning objectives of this
lecture.

• Non-triviality: Natural language output has infinitely many semantically
equivalent solutions, making the application of classical evaluation methods
difficult.

• Distinction: We clearly distinguished between the evaluation of the
language model itself (PPL, most likely option) and the evaluation of the
string output (EM/F1, BLEU, ROUGE-L, chrF, BERTScore, Numeric
Accuracy).

• Application: We rigorously defined each metric and understood the
calculation procedures through concrete examples and exercises.

90/95

7. Summary

Let’s summarize the key points corresponding to the learning objectives of this
lecture.

• Non-triviality: Natural language output has infinitely many semantically
equivalent solutions, making the application of classical evaluation methods
difficult.

• Distinction: We clearly distinguished between the evaluation of the
language model itself (PPL, most likely option) and the evaluation of the
string output (EM/F1, BLEU, ROUGE-L, chrF, BERTScore, Numeric
Accuracy).

• Application: We rigorously defined each metric and understood the
calculation procedures through concrete examples and exercises.

90/95

7. Summary

Let’s summarize the key points corresponding to the learning objectives of this
lecture.

• Non-triviality: Natural language output has infinitely many semantically
equivalent solutions, making the application of classical evaluation methods
difficult.

• Distinction: We clearly distinguished between the evaluation of the
language model itself (PPL, most likely option) and the evaluation of the
string output (EM/F1, BLEU, ROUGE-L, chrF, BERTScore, Numeric
Accuracy).

• Application: We rigorously defined each metric and understood the
calculation procedures through concrete examples and exercises.

90/95

Next Time

8. Next Time

In this lecture, we dealt with absolute evaluation metrics that target a single
probabilistic language model.

In the next lecture, we will address relative evaluation metrics that quantify the
deviation from a given reference probabilistic language model (e.g., distances
and divergences between distributions).

91/95

8. Next Time

In this lecture, we dealt with absolute evaluation metrics that target a single
probabilistic language model.

In the next lecture, we will address relative evaluation metrics that quantify the
deviation from a given reference probabilistic language model (e.g., distances
and divergences between distributions).

91/95

References i

[1] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal,
Carissa Schoenick, and Oyvind Tafjord.
Think you have solved question answering? try arc, the ai2 reasoning
challenge.
In Proc. of NAACL-HLT, 2018.

[2] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo
Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems.
In arXiv preprint arXiv:2110.14168, 2021.
GSM8K dataset.

92/95

References ii

[3] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika,
Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding.
In International Conference on Learning Representations (ICLR), 2021.

[4] Chin-Yew Lin.
Rouge: A package for automatic evaluation of summaries.
In Proc. of Workshop on Text Summarization Branches Out, 2004.

[5] Stephanie Lin, Jacob Hilton, and Owain Evans.
Truthfulqa: Measuring how models mimic human falsehoods.
In Proc. of ACL, 2022.

93/95

References iii

[6] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer sentinel mixture models.
In International Conference on Learning Representations (ICLR) Workshop,
2017.
Introduces WikiText datasets (WikiText-2/WikiText-103).

[7] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.
Bleu: a method for automatic evaluation of machine translation.
In Proc. of ACL, 2002.

[8] Maja Popović.
chrf: Character n-gram f-score for automatic mt evaluation.
In Proc. of WMT, 2015.

94/95

References iv

[9] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text.
In Proc. of EMNLP, 2016.

[10] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
Hellaswag: Can a machine really finish your sentence?
In Proc. of ACL, 2019.

[11] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi.
Bertscore: Evaluating text generation with bert.
In Proc. of ICLR, 2020.

95/95

