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1 Introduction

1.1 Review of the Previous Lecture

In the previous lecture, we rigorously defined and calculated frameworks for the automatic
and quantitative evaluation of a single probabilistic language model, covering perplex-
ity, accuracy of the most likely option in multiple-choice questions, and various metrics for
string output (EM/F1, BLEU, ROUGE, chrF, BERTScore, numerical Accuracy).

1.2 Learning Outcomes of This Lecture

By the end of this lecture, students should be able to:

» Explain the motivation and methods to reduce the scale (model compression) of a
neural network while maintaining its properties as a function.

* When a probabilistic language model is modified, evaluate the amount of change
from the original model in a mathematically rigorous and quantitative manner.

2 Preliminaries: Mathematical Notations

We will reiterate the basic notations used in this lecture.
» Definition:

— (LHS) = (RHS): Indicates that the left-hand side is defined by the right-hand side.
For example, a = b indicates that «a is defined as b.

» Set:

— Sets are often denoted by uppercase calligraphic letters. E.g., A.
— x € A: Indicates that the element x belongs to the set A.

— {}: The empty set.

— {a, b, c}: The set consisting of elements a, b, ¢ (roster notation).

— {x € A|P(x)}: The set of elements in A for which the proposition P(x) is true
(set-builder notation).

— |A|: The number of elements in the set A (in this lecture, used principally for finite
sets).

— R: The set of all real numbers.
— R.o: The set of all positive real numbers.

— Rso: The set of all non-negative real numbers.
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— Z: The set of all integers.

— Z-o: The set of all positive integers.

— Zso: The set of all non-negative integers.

— [1, k]z: When k is a positive integer, [1,k]z == {1,2,...,k}, i.e., the set of integers
from 1 to k. When k = +o0, [1,k]z = Zs, i.€., the set of all positive integers.

* Function:

— f: X — Y: Indicates that the function f is a map that takes an element from set

X as input and outputs an element from set V.

— y = f(x): Indicates that the output of the function f for aninputx e X isy € V.
 Vector:

— In this course, a vector refers to a column of numbers.

— Vectors are denoted by bold italic lowercase letters. E.g., v.

— v € R": Indicates that the vector v is an n-dimensional real vector.
— The i-th element of a vector v is denoted by v;.

V1

V2

v=|. (1)

Vn

— For two vectors u,v € Ré%mb the standard inner product
» Sequence:

— Given a set A, an integer n € Z.o U {+0}, and a function a : [1,n]z — A, we call
a a sequence of length n consisting of elements from the set A. When n < +oo,
the sequence is called a finite sequence, and when n = oo, it is called an infinite
sequence.

— Sequences are denoted by bold italic lowercase letters, just like vectors. This is
because a finite sequence can be considered an extension of a real vector. In
fact, a finite sequence of elements from R can be regarded as a real vector.

— For a sequence a of length n with elements from set A, the i-th component a; for
i € [1,n]z is defined as a; := a(i).

— When n < +o0, a sequence a of length n with elements from set A is determined
by its elements a1, ao, ..., a,, SO we write it as a = (a1, as, ..., a,). Similarly, when a
is an infinite sequence, we write it as a = (a1, as, ...).



— The length of a sequence a is denoted by |a|.
» Matrix:

— Matrices are denoted by bold italic uppercase letters. E.g., A.
— A € R™": Indicates that the matrix A is an m x n real matrix.

— The element in the i-th row and j-th column of a matrix A is denoted by a; ;.

ail ai2 ain
azl a2 az.n

A= , (2)
aAm,1 Am2 ' Amn

— The transpose of a matrix A is denoted by A". If A € R"™" then AT € R*", and

ail d4az1 -+ Aaml
ai2 d4dz2 -+ am?2
T _ E) E) 9
Al = (3)
aAlpn AaA2n *°° dmn

is given.

— A vector is also a matrix with one column, and its transpose can also be defined.
vi={vi vy -0 v,|€RY (4)

is given.
» Tensor:

— In this lecture, the word tensor simply refers to a multi-dimensional array. A vector
can be seen as a 1st-order tensor, and a matrix as a 2nd-order tensor. Tensors of
3rd order or higher are denoted by underlined bold italic uppercase letters, like A.

— Students who have already learned about abstract tensors in mathematics or
physics might feel uncomfortable calling a mere multi-dimensional array a ten-
sor. If we consider that the basis is always fixed to the standard basis and identify
the mathematical meaning of a tensor with its component representation (which
becomes a multi-dimensional array), then the terminology is (at least) consistent.



3 Neural Network Compression (Model Compression)

3.1 Revisiting the Formulation of Al as Function Learning

The primary goal of Al was to learn an appropriate relationship (function) between in-
puts and outputs. However, even after a good function has been obtained, there is a strong
practical motivation to modify it to reduce implementation resources (memory, computa-
tional complexity, latency) while preserving the input-output relationship of that function
as much as possible. In this lecture, we will refer to such an act of reducing implementation
resources while maintaining the input-output relationship of a function as model compres-
sion.

3.2 Motivation and Overview of Compression

Even when a good function f has already been obtained, there is motivation to make the
model’s representation (parameterization) more lightweight while preserving the func-
tion values (input-output relationship). Representative methods include low-precision
floating point, quantization, and model distillation [2,4-5,9].

3.3 Rigorous Definition of Low-precision floating point

Definition 3.1 (Generalized Low-Precision Real Number System and Rounding Operator).
Let dparam € Zso. For each index i € {1,...,dparam}, We are given a finite set F; c R as a
floating-point format and a rounding operator R; : R — F;.

Original parameter space ~ F :=Fy x -+ X Fy ... C Rfperem, (5)

Let the post-low-precision format for each component be F. c R, and the corresponding
rounding operator be R} : R — F;, then

Post-low-precision parameter space F' =F x--xF C Réparam (6)

dparam

For each format F, we define its required number of bits 5 (F) € Z,y as "the minimum bit
length for which an encoding map ¢ : F — {0, 1}*® exists to represent each element of F”.
We impose the resource non-increase constraint for low-precision conversion as

b(F:) < b(F)) i=1,..., dparam) (7)

Forany 6 = (01,...,04,,.m) € Réearam - we define the generalized low-precision mapping



@y, : Réparam — F7 3g

©i,(0) = (R{(61). Ry(B2). - R (Byn)) (8)

The method of replacing 6 with @, (8) for computation during inference (or a part of training)
is called low-precision conversion.

Remark 3.1. Equations (8)—(8) allow for a mixed type where the format differs for each ele-
ment (per-parameter). In mixed-precision training, different F; are assigned to gradients,
gradient accumulations, weights, and activations to reduce computational resources [9].

3.4 Rigorous Definition of Quantization

Definition 3.2 (General Form of Integer Quantization with Partitions and Dequantization).
Given a parametric function f.,, a parameter vector § € Féaam  an ordered partition
(I1,...,I;) of the index set I = {1,...,dparam}, @nd a maximum absolute value in the
integer domain M, € Z. for each partition (j = 1,...,k). For quantization, we choose
modified parameters 6’ € Féraam | and for each j, a quantization scale s; € R, and a
quantization zero-point / bias b, € Z.

For each partition 7;, we define a quantization mapping Q; : R — Z and a dequantization
mapping Q; : Z — R as

Qj(x) = clip[_Mj’Mj](round(sij) + bj), (9)
Qi(n)=sj(n-b;) (neZ) (10)

The vector versions are defined as
Quan’[izeu).l;:l,s’b(g’) =q € dearam’ qi = Q] (61,) (l € ‘IJ)’ (1 1)
Dequant'ze(]-)le’s’b(q) = ’é (S dearam, ﬂédl = Q](ql) (l € I/) (1 2)

We write the inference function with quantized parameters as

fQuantize(I);?:l,s’b(g’)

The goal is, for a given fy, to choose appropriate (6’, s, b) to achieve

Jauantize .50 ~ fo (14)

k
Dk,

Fundamental operations such as matrix multiplication are performed in the integer domain
Z, accompanied by scale composition and rescaling as needed [6].



Remark 3.2. As a method to achieve Equation (d4), the approach of setting 8’ = 6 and de-
termining (s, b) based on data statistics is called post-training quantization. On the other
hand, the method of optimizing (6’, s, b) including the training process to directly improve
post-quantization performance is called quantization-aware training [5, 6].

Remark 3.3. In this lecture, we have focused on parameter quantization, but a common
design is to quantize intermediate outputs (activations) during inference and evaluate
the combination (node output and edge weight) with integer multiplication. This allows the
arithmetic units to specialize in integer operations, achieving higher speed and lower power
consumption [B].

Example 3.1 (Manual Calculation Example of Quantize and Dequantize). Given: dparam = 4,
0’ = (1.20, —0.55, 0.07, 2.31), partition (71,15) = ({1,2},{3,4}), My = 127, My = 7, 51 =
0.01, b1 =0,s2=0.1, by =1.

Component1 (i=1€ 11): g1 = Clip[_127’127](round(1.20/0.01) +0) = clip(120) = 120,
6, = 0.01- (120 — 0) = 1.20.

Component 2 (i =2 € 1;): g2 = clip{round(—0.55/0.01)) = clip(-55) = =55,
65 = 0.01 - (=55 — 0) = =0.55.

Component3 (i =3 € L): g3 = clip[_m(round(o.()?/().1) +1) =clip(1+1) =2,
63 =0.1-(2=1) =0.1.

Component4 (i =4 € 5): g4 = clip[_7,7](round(2.31/O.1) +1) =clip(23+ 1) = clip(24) = 7,
0s=0.1-(7=1) =0.6.

From the above, ¢ = (120, =55, 2, 7) and 8 = (1.20, —0.55, 0.1, 0.6). It can be seen that the
large value 2.31 is saturated by M-, increasing the error.

Exercise 3.1 (Quantize/Dequantize Exercise). Let dparam = 3, 8" = (0.34, —1.26, 0.51), par-
tition (77, 1) = ({1,3},{2}), M1 = 15, My = 127, s1 = 0.02, by =2, s9 = 0.01, by = 0.

Answer. Component 1 (i = 1 € 1;): round(0.34/0.02) = round(17) = 17, g1 = clip[_y5 15 (17 +
2) = clip(19) = 15, 6; = 0.02 - (15 — 2) = 0.26.

Component 2 (i = 2 € I13): round(-1.26/0.01) = round(-126) = =126, g2
clip|_197.197)(~126 + 0) = =126, 65 = 0.01 - (-126 — 0) = —1.26.

Component 3 (i = 3 € 73): round(0.51/0.02) = round(25.5) = 26, g3 = clip[_1515(26 + 2)
clip(28) = 15, 63 = 0.02 - (15 — 2) = 0.26.

Thus, ¢ = (15, —=126, 15) and @ = (0.26, —1.26, 0.26). The error is large because the 1st and
3rd components were saturated by M; = 15.



3.5 Rigorous Definition of Knowledge Distillation

Definition 3.3 (Model Distillation). Suppose we are given a function fy composed of a para-
metric function f{,) and a parameter vector . For the purpose of approximating fy at
a lower cost, we use another parametric function g, with a lower-dimensional parameter
space, and find a suitable parameter vector y such that g, becomes a good approximation
of fy. This process is called model distillation.

As aresult, g, can be used as a low-cost substitute for fy.

Remark 3.4. Distillation is broadly classified into model distillation (transferring the behav-
ior of a large teacher model to a small student) and dataset distillation (approximating the
learning effect of the original dataset with a small number of synthetic or summarized data).
While the formulation in this section focuses on the former, the latter can also be expressed
by replacing fy(x) in the objective function with "the teacher’s output for teacher-generated
data”.

4 Divergence between Probabilistic Language Models

The core of large language models that handle natural language was the probabilistic lan-
guage model composed of neural networks. When this is compressed, one becomes con-
cerned about how much it differs from the original probabilistic language model. This chapter
deals with metrics that express how much another probabilistic language model has diverged
when there is a reference probabilistic language model.

4.1 A Simple Method: Differences in Individual Evaluations such as
Multiple-Choice Questions

A simple and commonly used method is to measure the performance of two models on the
same task, such as a multiple-choice question, and compare the difference. However, if
the evaluation is based solely on the answers, it is possible to overlook cases where the
inference processes are significantly different even if the final answers are the same [f]].
Therefore, one might consider directly comparing the probability distributions constituted by
the probabilistic language models.

4.2 Review of Probabilistic Language Models

A probabilistic language model was, mathematically, a conditional probability function. Let’s
review it.

Definition 4.1 (Vocabulary and Token Sequence, Notation for Subsequences). The set of
possible values a token can take is called the vocabulary, denoted by V2. Hereafter, when
the vocabulary size is D, we will identify the vocabulary V with the subset of natural numbers



[1,D]z ={1,2,...,D}. The set of token sequences of length n can be regarded as the direct
product of n copies of V, and this is written as V". Note that V' is the set consisting of the
token sequence (). Furthermore, the set of token sequences of finite length is written as V*.
YV =Vouvluv2u.-...

For a token sequence t = (#1,...,t,) € V", we define the notation for subsequences as
follows:
tap = (taata+1, ce. 7tb) (1 <a<b< l’l), (15)
tai =ty ((21), L = ty, (16)
L= t(i+1):n (l < I’l), l>i = tip. (17)

The empty subsequenceis t.; = t.,, = (). Also, to emphasize the first n elements, we write

L.

4n previous lectures, the set of nodes in a neural network was also denoted by V, but since this lecture
does not explicitly describe the graph structure of neural networks, <V should always be taken to refer to the
vocabulary.

Definition 4.2 (Probabilistic Language Model (most general form)). Fix a finite vocabulary
YV ={1,2,...,D}. A probabilistic language model is a function P(-|-) that, given any finite-
length token sequence ¢t = (14, .. .,t,) € V", returns the probability mass function of the next
token, conditioned on it. More formally, a two-variable function P(-|-) : V xV* — [0,1] is a
probabilistic language model if for any ¢ € V*,

ZP(vlt):l (18)

veV

holds.

Since a probabilistic language model is mathematically a conditional probability mass
function, the quantification of divergence between probabilistic language models can ulti-
mately be reduced to the problem of divergence between general probability mass functions.

4.3 How to Quantify the Divergence of Probability Mass Functions

Given a "correct” probability mass function P to be referenced and another probability mass
function Q, we want to measure how much Q diverges from P. If O does not diverge much
from P, then for a z where P(z) is large, Q(z) also tends to be large. Therefore, for a
random variable Z following the probability distribution defined by P, the value of Q(Z) should
tend to be large on average (with respect to the probabilistic behavior of Z). Thus, using a
monotonically decreasing function ¢ to penalize small probability masses,

Ez-r[¢(Q(2))] -C (19)



it is natural to consider a divergence criterion of this form. Here, the argument of a probability
mass function (not a probabilistic language model) is principally denoted by z or Z. In the
following, we will establish the axioms that this criterion should satisfy and rigorously show
that it uniquely determines the form of ¢, and thus specifies the KL divergence (relative
entropy).

Definition 4.3 (Axiomatization of Expectation-of-Difference Type Divergence Functional).
Setting: Consider probability mass functions (pmf) on a finite set S. Assume that any pmfs
P, Q have the same finite support S, and that for any z where P(z) > 0, Q(z) > 0 also holds
(the converse will be explicitly stated when necessary).

For a monotonically decreasing continuous function ¢ : (0,1] — R and a constant C € R,
consider the functional on any pmfs P, Q

As(P || Q) =Ez-p[¢(0(2))] - C (20)
We impose the following axioms on this:
(A1) Reflexivity: Ay(P || P) = 0.

(A2) Non-negativity: As(P || Q) > 0, with equality if and only if P = Q (not just equivalent
a.e., but identical on S).

(A3) Continuity: As(P || Q) is continuous with respect to the usual topology on the point-
wise values of Q.

(A4) Additivity over independent products: For two finite sets S;, S» and their respective
pmf pairs (P, Q1) (with common support S;) and (P, Q2) (with common support Ss),
using the product distributions (Definition B4) P; ® P> and Q1 ® Qa,

Ap(P1® P2 || Q1 ® Q2) = Ag(P1 || Q1) + Ay (P2 || Q2) (21)

holds.

Definition 4.4 (Product ® of pmfs). For pmfs Py, O, on a finite set S; (with common support
S1) and Py, Q2 on S (with common support ), the pmf P; ® P, on 81 X Ss is defined as

(P1® P3)(x1,x2) := P1(x1) P2(x2) (22)

(and similarly for Q1 ® Q9).

Theorem 4.1 (Characterization of the Logarithm Function from Expectation-of-Difference
and Uniqueness of KL). For a monotonically decreasing continuous function ¢ satisfying
(A1) - (A4) in Definition B33, there exist constants ¢ € R,y and B € R such that

¢(u) =—clogu + B (u e (0,1]) (23)
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holds. Furthermore, to satisfy (A1), the constant C must be
C =Ez-#[¢(P(2))] (24)
(a normalization term dependent on P). Therefore,

Ag(P || Q) = Ep[~clog Q(Z) + B] — Ep[~clog P(Z) + B]
[ P(2)

] _ cDkL(P [ Q) (25)

Proof. (1) Derivation of a functional equation from additivity over products. From (A4),
for any finite sets 81, Se and pmf pairs (P, Q1), (P2, Q2),

As(P1® Pa || Q1 ® Q2) = E(z,.25)~P10Ps [¢((Q1 ® 02)(Z1, 22))] ~ 12
= Ap(P1 || Q1) + Ag(P2 || Q2) (26)

for some constant Ci2. Applying (A1) with Q1 = P; and Q2 = P; gives

C12 = E(z,,25)~P10P, [¢((P1 ® P2)(Z1, Zz))] : (27)

Note here that the argument of ¢ is limited to the form Q1(Z1)02(Z3) (or P1(Z1)P2(Z2)).
Regarding u € (0, 1] as a possible value of Q01(Z;) and v € (0,1] as a possible value of
02(Z3), the fact that the relationship in (28) and (Z2) holds for any choice of pmf implies an
equality depending on u, v:

Pp(uv) —¢(u) —p(v) =K (28)

holds for a constant K (which depends only on ¢(1)). Indeed, by fixing the values of Z;, Z,
and comparing (28), the same difference must arise for combinations of arguments of ¢. By
specifying ¢(1) by applying (A1) with P = Q on a one-elementset S = {1}, we find K = —¢(1),
SO

$(u) = p(u) —¢(1) = $(uv) = $(u) + $(v). (29)

(2) Elementary solution of the additive equation (using continuity). Letu =¢’, v = ¢*
and define y (1) := ¢(e’). Then (P9) becomes

Y(t+s)=y()+y(s) (1,5 €R) (30)

From the continuity in (A3), ¢ is continuous, hence ¥ is also continuous. From this, we show
elementarily that ¢ is a linear function:

(2-1) Linearity on rational numbers: For n € Z.q, repeating (30) n times with s = 7 gives
y(nt) = ny(r). Also, substituting z/n for ¢ gives y(r) = ny(t/n), therefore y ((m/n)t) =
(m/n)y (1) holds for m € Z.

(2-2) Extension to real numbers: Take any r € R and &€ > 0. There exists a rational
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sequence g, — r, and by continuity, ¥ (gx) — ¥ (r). On the other hand, from (2-1), ¥ (gx) =
qr ¥ (1), so taking the limit gives y/(r) = ry/(1). Therefore

w(t)=c't (¢ =w(l) eR). (31)

(3) Determination of the form of ¢. We can write ¢(u) = y(logu) = ¢’logu. So ¢(u) =
d(u) + #(1) = ¢’ logu + B. To satisfy (A1), it must be that

0=2A44(P || P) =Ep[¢(P(2)]-C = C=Ep[¢(P(2))] (32)

Hereafter, we replace ¢ := —¢’ to obtain (23).
(4) Reduction to KL and derivation of ¢ > 0 (elementary proof of Gibbs’ inequality).
Substituting (23) and (32) into (20), we get

Ay(P || Q) = ~cEp[log Q(2)] + B ~ (~c Ep[log P(2)] + B)

P(2)
=c Z P(z)log 00

=cDkL(P | Q). (33)

Here, we show Dk, (P || Q) = 0 elementarily. For any a > 0, loga < a — 1 (from the tangent
line of the concave function log, or from the derivative f’(a) =1 —1/a and f”(a) = 1/a*> > 0
of f(a) =a—1-1loga (> 0)). Letting a = L2

m:
0(z) 0(2)

Multiplying both sides by P(z) and summing over S,

S P()log 28 > Y (P()-0()) =1-1=0. (35)

Equality holds if % = 1 at points where P > 0, i.e., only when P = Q. Therefore, to satisfy

(A2), ¢ > 0 is necessary. m|
Remark 4.1. Theorem B shows that from natural axioms such as expectation of differ-
ence, additivity for product distributions, and continuity, ¢ is uniquely determined to be
a logarithm function (up to an additive constant), and consequently, the KL divergence
(relative entropy) is uniquely derived [3, Ch. 2].
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4.4 Definition of Kullback - Leibler (KL) divergence

Definition 4.5 (KL Divergence (for pmfs)). Let P, Q be two probability mass functions with
the same finite set S as their support, and assume that for any z where P(z) > 0, Q(z) > 0
also holds (so the ratio is defined). The KL divergence (relative entropy) is defined as

DxL(P [ Q) = Y P(2) 1og( QEZ))) [0, o] (36)
ze€S

Non-negativity and the equality condition Dk, (P || Q) =0 & P = Q follow from Equation
(B39) [3,7].

Example 4.1 (Complete Numerical Example of KL). Consider the probability distributions
on the vocabulary {a, b, ¢}

P(a) =05, P(b)=0.3, P(c) =02,  Q(a) =0.4, O(b) = 0.4, O(c) = 0.2

From Equation (38),

P(x)
Di(PIQ) = ), P log i
xe{a,b,c}
0.5 0.3 0.2
=0.5log — log — + 0.2log — 7
O5og04+03og04+0 08 55 (37)

The last term vanishes since log 1 = 0. We calculate the other two terms sequentially:
0.5
blog — =0.51log(1.2
O5og0.4 0.51og(1.25),
0.3
Jlog — =0.31 .75).
0.3 ogO.4 0.310g(0.75)
Using the natural logarithm,
log(1.25) ~ 0.22314, 1log(0.75) ~ —0.28768,

hence

DxL(P || Q) ~ 0.5 x 0.22314 + 0.3 x (~=0.28768)
~ 0.11157 — 0.08630 = 0.02527 [nats]. (38)

If the base of the logarithm is 2, it is 0.02527/log 2 ~ 0.03645 [bits].

Exercise 4.1 (Numerical Calculation of KL). On the vocabulary {x1, x2, x3}, let

P=(020503), 0=(0.1,0.70.2)

13



Calculate Dk, (P || Q) (using natural logarithm).

Answer.

0.2 0.5 0.3
D1 (P =0.2log — Hlog — 3log —
kL(P || Q) = 0.21og 01 + 0.51log O.7+03 og 09

= 0.2log 2 + 0.5log(5/7) + 0.31og(3/2).
Numerically, log 2 ~ 0.69315, log(5/7) ~ —0.33647, log(3/2) ~ 0.40547, SO

0.2%x0.69315 + 0.5 X (—0.33647) + 0.3 X 0.40547 = 0.13863 — 0.16824 + 0.12164 ~ 0.09203 [nats].

Proposition 4.1 (Additivity of KL for Product Distributions). For the product ® from Definition
@4, and for pmf pairs (P, Q1) on a finite set S; (with common support) and (P2, Q2) on S
(with common support),

Dx1,(P1® Py || Q1 ® Q2) = Dx1,(P1 || Q1) + Dx1.(P2 || Q2) (39)

holds [3, Prop. 2.4].
Proof. From Definition &3 and (22),

Dk, (P1® Py || 01 ® Q2)

- Z P1(x1)P2(x2) 10g(

(x1,x2)€S1 xS2

P1(x1)P2(x2) )
Q1(x1)Q2(x2)

Pi(x1) Ps(x2)
= Z P1(x1)P2(x2) log( 5 (xll)) * log( o, (Xz))

= le: P1(x1) 103;(2112);11)) ) ; P (x2)

+ ; Po(x2) log(gzgz))) ; P1(x1)

= Dx1(P1 || Q1) + DkL(P2 || Q2),

where we used .. P;(x;) = 1. O

4.5 Extension of KL to Language Models (Conditional Distributions)
and Two Definitions

When a language model is viewed simply as a conditional probability distribution, the most
straightforward definition is the following.

Definition 4.6 (A. KL based on Joint Distribution). Take a fixed length n € Z.,. For language
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models P, Q, we define the joint distributions they induce, respectively,

PO (ty) = [ [Pt | ta).  @"(tr) = [ [ O | i) (40)
i=1 i=1
(where t; = (t1,...,t-1)). Then we define

P(n) (tl:n)

|| )Y — ) (¢,. —
DiuP® 11 @) = D P (tr) log ey s

t1:n

(41)

To handle variable-length token sequences and from a computational complexity per-
spective, the following sequential representation using the chain rule is useful.

Proposition 4.2 (Chain Rule for KL Divergence). For any n € Z.,
Dk (P™ || Q™) = Z E;_~pi-n [ DKL(P(- | t) || Q( | 1<) | (42)
i=1

holds.
Proof. Using definitions (1) and (&0),

P(n)(tl:n) B 1 P(t; | ts)
8 @ () Z 8 S Tt

Taking the expectation of both sides with respect to P and exchanging the sum and ex-
pectation by linearity,

[1 P(t; | t<i)]

n
Diw (P11 Q) = ) By, pio |log o=
l <i

i=1
= ZE,< ~pli-1)

= Z Ey,-piv [DkU(PC | £) 11 QC | £))] .
i=1

P(t | £2)
2P ) los 5 t<,>]

O

Definition 4.7 (B. KL based on the Conditional Next-Token Distribution using a Dataset).
Given a validation dataset D = {¢\/) }?’:1. For each sequence, decompose it into input tokens
x() and output tokens y) such that ¢\/) = x(Wy() (x() is always known as the context).
Then, for each j, we extend y/) one token at a time and sum the sequential KL divergences.
Furthermore, we also take the average over the sequences:

|y(J)|

BR.(PIQ) = | — |ZZ D[P 127,y 11 0C 15D D). (49)
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Proposition 4.3 (Virtual Equivalence of A and B). Assume that all sequence lengths are
equal to n (ly)| = n), that O is generated i.i.d. according to P\, and that we take the
expectation weighted by the occurrence frequency of each prefix ¢.;. Then

Ep-ponyon |DRL(P 11 0)] = = DKL(P<"> I ™). (44)

Proof. Starting Point (i.i.d. and one sample). We assume D = {t(f)}i.vz1 is generated i.i.d.
according to P (assumption of Proposition &-3). From the definition in Equation (&3), by
the linearity of expectation,

N |y(1)|
E@[EQL(P I Q)] = ZN | ] Z Z DKL(P( | xU ’yq)) 1o([x ’y<l )) (45)
J=1 j=1 i=1
1 & . P(u | ti’;))
]Z;,Z] Em ~P(n) ;VP(M | tifi))logm , (46)

where we used |y/)| = n. Since each sample follows the same distribution (i.i.d.), the same
expectation appears N times, independent of ;:

where T'1., is one sample following P,
Writing out the marginalization of the prefix. For any function g(z.;), the expectation
under P™ is by discrete sum

Pu|T<)

0w [T |’ “7)

D P To)log o=

ueV

Br,-po [@(T<)] = )" POt glt) = 3, " D (PO (1) g2} (48)

t1:n toi ity

From the chain rule expression (20),

POt = ([ ] Py 1<) Pl L) ([ ] P 1 22). (49)

J<i Jj>i

On the right-hand side, g(¢-;) does not depend on t.;, so we can compute the inner sum
over t; first:

Z ﬂp(tj lt;) = 1. (50)

tsi j>i
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Therefore,

@) => > {(]_[ P(1j | t))) P(s | t<,->} g(ta)

toi t; j<i
= > PV () g(ta). (51)
te;

Here we have set PU~D(z) = [1;.; P(1; | t;).
Specifying each term of Equation (7). Choosing g(t-;) = >, P(u | t;) log
applying (B1),

P(ulti)

o) and

P(u|T<)

0(u | Tx) = > PUV () Du(P( | ) | QC | £<)).  (52)

to

IETl:nNP(Vl>

2P| T)log

Substituting this into (&4),

En| D2 (P I Q)] =" 3 PVt DialPC | 1) 1 OC | £20)
=1
“a

E,_.pe-v|Dxi(PC 1) | OC | t<))] - (93)
i=1

Equivalence with joint distribution KL. Finally, by averaging the decomposition log

., log pei=i with respect to P and using a similar decomposition as in (&T) for each po-

sition i, we get

Dxi(P™ || @) = Z E,_ pi-1 [Dxi(P(- [ t<) | O( | )] - (54)
i-1

Comparing (63) and (&4)), we obtain

—~ 1
Ep-(pmyen [D%J(P | Q)] =~ Dgi(P™ || ) (55)

This completes the proof. O

Example 4.2 (Numerical Example of Sequential KL (fixed length 2)). Let the vocabulary be
{A, B} and length n = 2. The conditional distributions of P, Q are

P(A] () =06, P(B| ) =04, P(A|A)=0.7, P(A|B) =02,

Q(A1(0) =05, Q(B|()) =05 Q(A]A)=0.6, Q(A|B)=0.3

17
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(the others are 1 minus these values). First, the KL fori = 1:

0.4

DxL(P(- 1 O) I1QC () =0. 610%% +04log .

Next, the conditional KL for i = 2, averaged under ¢; ~ P(- | ()):

0.7 0.3 0.2 0.8
E-p|[DkL(PC | 1) 1| OC | 11))] = 0.6-(0.7logﬁ+0 31og @)*0 4. (0 2log 5= +0.8log ﬁ)

Summing these gives D1, (P2 || 0?) (Equation (£2)).

Exercise 4.2 (Sequential KL Calculation Practice). Let vocabulary be {0,1}, P(1 | () =
0.3, P(1]1) =06, P(1]10)=0.2,0(1 () =04, Q(1|1)=0.5, Q(1]0)=0.3 (others are
differences from 1). For n = 2, find Dkr,(P® || 0©?).

Answer. First token: 0.310g(0.3/0.4) + 0.710g(0.7/0.6). P-average of conditional KL for
the second token:

0.3 - [0.610g(0.6/0.5) + 0.410g(0.4/0.5)] + 0.7 - [0.210g(0.2/0.3) + 0.8 log(0.8/0.7)].

The sum of both is the answer (Equation (22)). Numerical substitution gives approximately
0.019 [nats].

4.6 Definition of Jensen- Shannon (JS) divergence

Definition 4.8 (JS Divergence based on (Probability Distribution) Joint Distribution). For the
mixture distribution » == 3(P + Q) of P, Q,

Djs(P || Q) = $Dki(P || M) + 1Dx1,(Q || M) € [0,log 2] (56)

is called the Jensen - Shannon divergence. D ;g is symmetric and bounded [8].

Remark 4.2. D ;g is a symmetrized KL, averaging the divergence in both directions via
M. The square root VD jg is known to satisfy the axioms of a metric [8].

Example 4.3 (Complete Numerical Example of JS). Using P,Q from Example B3.. M =
T(P+Q)is
= (0.45, 0.35, 0.2).

By Equation (B8),

Dys(P |l Q) = 2ZP( >1og

QZQ(x)l —. (57)
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We calculate each term sequentially:

x) 5 0.2

P01 0.5log —— + 0.31og —= + 0.2]og —=,
2 1o 3775 0.45 %8035 " Y802
0(x) 0.4 0.4 0.2

1 = 0.4log —— +0.4log —— + 0.2log ~=.
;Q(x) & M(x) %8 0.45 € 0.35 %8 0.2

One should sum the terms that are not 0 and finally multiply by 1/2.

Exercise 4.3 (Numerical Calculation of JS). For P = (0.2,0.5,0.3), Q = (0.1,0.7,0.2) from
Example 8], find Djs(P || Q).

Answer. M = (0.15,0.6,0.25).

P 0.2 0.5 0.3
Plog — = 0.21og —= +0.51og =2 +0.31
24 KNV °€0.15 0.6 98 0.25°

0.1 0.7 0.2
log = = 0.1log —— +0.7log ~— + 0.2 log ~—
ZAQOg %015 T %06 T %025

The answer is % of the sum of both. Numerically, it is approximately 0.016 [nats].

Definition 4.9 (JS based on (Language Model) Joint Distribution). Let M be the average
conditional distribution for each prefix, M (- | t;) := %{P(- | t.;)+0O(- | t;)}. For afixed length

n,
Dys(P™ 1| 0™) = 1B, _pun llog M]
M™ (t1.)
+ %Etle(n) [log %] (58)
is defined.
Proposition 4.4 (Chain rule for JS in language models). For any n € Z.,
Dys(P™ || 0™) = Zn: {3 B pu-v[DkL(P(- [ ta) | M(- | £))]
+5 B, ou-0[DKL(Q( | t<) | M(- | t))]} (59)

holds.
Proof. Step 1: Decomposition of the logarithm From the definition of joint distribution

(&0), for any sequence ¢,

P( )(tl n) Z P(tz | t<z)

MO (t1,) "M@ 1) (60)
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The same equation holds for Q.
Step 2: Writing out the expectation with respect to P For any integrable function
g(t1.,), by discrete sum,

Et1 n~P g(tl n) ZP(H)(tl n)g(tl n) (61)

t1:n

Here, setting g(t1.,) = log(P" (¢1.,)/M "™ (t1.,)) and substituting (B0),

(n)
Ey,,,~po |lo [1 P, ")] ZP(H)(t ")Z P | t)

* MO (1, SMGi 1)
_ (n) P(lz | t<:)
Z ) (62)

The last equality is merely an exchange of order of finite sums.
Step 3: Decomposition by prefix and current token For each fixed i, we decompose

the sum over ¢1., into sums over "prefix ¢.;”, "current token ¢;”, and "suffix ¢.;”. That is,

Pt |t
ZP(n)(tlzn) log M

M 1<)
DI (P01, tog LU L) )

Using the chain product form (2D),
PO (t1,) = (l,—[ Pt | <)) PU; | £<0) (l‘[ Pl | t<))). (64)

Of the right-hand side, log(P(s; | t;)/M(1; | t<;)) depends only on #; and t;, not on ¢.;. Thus,
we can perform the innermost sum (over ¢-;) in (B3) first:

> {(]_[ P(; | t<,~))} =1. (65)

tsi J>i

This is the fact that we reach 1 by sequentially using ., P(u | -) = 1 at each position.
Step 4: Identity of marginalization Substituting (64) and (B5) into (B3),

P(ti | t<i)
P(”) t1. 1 -~ 7
2P ) 08 376

t1:n

P {(ﬂ P(; | £2)) P(s | t<,>} L (66)

toi J<i
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Here, since [1;.; P(1; | t<;) = PU" P (1<),

- Pt ta)
)= P ZP(rl | t<i) log 170 (67)

te

Step 5: Summarizing the P-side contribution Combining (62) and (B2),

PO Pl 1)
(l 1) 1 <i
B0 7| = 2 3P St ) o

=3 By PP ) MG 220 (68)

i=1

Step 6: Same for the Q-side Applying the exact same argument to Q,

n

(n)
Z By~ | DKi(QC | £<) | M(- | £0) | (69)

log — i)

Etl NQ(n)

Step 7: Combination Substituting (68) and (B9) into the definition (B8),

Dys(P™ || Q") = 12 B,.,-pu-n| DitlPC | £) | M(- | £)|
i=1

+33 Brgun|DralQC 1) I MG T 1),
i=1
which is the claim (89). This completes the proof. m]

Similar to KL, sequential evaluation using data sequences is practically useful.

Definition 4.10 (JS based on (Language Model) Conditional Next-Token Distribution). Given
a validation dataset D = {t(f)}N decompose it as /) = x(y() and for each position,
define M(- | xU),yY) = L(p(. |x(f) Y +0( [ x9),y)}. Then

N y@|
DRI = F— (MZZ [30xu(PC 129,y D) I M(- 129,y ))
+5Dia(0C [ ¥,y ) I M (-1 x93 D))| (70)

is defined.

Proposition 4.5 (Virtual Equivalence of Joint and Next-Token JS versions). Assume that
ly)| = nis constant for all j, that D is consistent with a mixed generation from P and Q"
(such that the left and right expectations are evaluated by their respective chains), and that
the weighting is chosen such that the empirical measures of prefixes match P~ and Q-1
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respectively. Then
E[DR(P 11 )] = = Dis(P® || ). (71)

Proof. Starting Point (i.i.d. and one sample). We assume |y")| = n is constant for all j,
and by the assumption of Proposition &8, D = {¢\/) }yzl has a mixed generation consistent
with P and Q" (weighted so that the expectations for the P-side and Q-side chains are
evaluated accordingly). From Definition &30 and the linearity of expectation,

n

E|DR(P 11 0)] =+

Mz

[1DKLP< 20y M 129,y 9)
j=11i

+QDKL(Q< 2,y ) M 20,y 0)) | (72)

Due to i.i.d. and the consistency of the mixed generation, the expectation of each term is
the same regardless of j, so

1 n
(ZZ) - Z Z {% ETl:n"’P<n)

i=1

PWIT.)
2, Pl T<dlog yrerrrs
<I

uevV (
Qul|S<)
Z Q(u | S<) 10gm

uevV

1
+ 3 Eg,,,~om

}, (73)

where Ty, ~ P™ and S1., ~ Q™ are single samples, respectively.
Marginalization by prefix (P-side). As in the KL case, for any g(t¢-;),

B~ [8(T<)] = D PO () glt), (74)

tei

holds (similar decomposition as in Equation (&T)). Choosing g(t<) = %, P(u | t<) log sk,

Pu|T)

- ZP("‘D(t<,~) Dxi(P(- [ t<) | M(- | t<)).  (75)
tei

Marginalization by prefix (Q-side). Similarly,

ESl ~Q(”) [7(S<i)] ZQ(l 1)(S<z) h(s<), (76)

S<i

and choosing A(s<;) == Y, Q(u | s<;) log AQ/I(('ZHSSZ)),

O(u|S<)

MaTS| = ZQ(i—D(s<i) Dxi(Q( | s<) | M(- | s<)). (77)

S<i

Eg1.~om Z Q(u | S<)log
u
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Combining contributions per position. Substituting (Z8) and (Z2) into (Z3),

B|DR(P 1 0)] = %i{%ﬁt<i~p<fl>[DKL(P<- [ <) I MG )|

i=1

+ %Es<i~Q(i—1)[DKL(Q(' |'s<i) | M(- | S<i))]}~ (78)

Equivalence with joint distribution JS. The terms appearing on the right-hand side of
Definition &9,

P(n)(tlzn) -
e =3 By e [DralPC e T MC )] 79

Etl:n"’P(n) [log
i=1

Q(n) (tlzn)

E | log =————=
t1:0~0! )[ &) M(n)(tlzn)

] = Z ti~0li- 1)[DKL(Q( [ i) || M(- |t<z))] (80)
i=1

both follow directly from a prefix decomposition similar to the KL case (an argument of the

form of Equation (51)) = Y. log A;;(( ||t¢<')) (Equation (B0)). Substituting these into

Definition (B8),

n

Dys (P 1] ) = {%Et<,.~P<f-n[DKL(P(- ) | M(- | 2) |
1

i=

+ %EtaNQ(f—l)[DKL(Q(' | t<i) ” M( | t<i))]}- (81)
Comparing (Z8) and (81), we obtain

E|DR(P 11 0)] = = Das(P™ Il ) (82)

This completes the proof. m]

5 Summary

In this lecture, we organized the motivation for reducing the scale of a model while pre-
serving its input-output relationship as a function. Furthermore, we quantified the dif-
ference between probabilistic language models before and after modification for scale
reduction using KL divergence and JS divergence.
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