
AI Application Lecture 9

Neural Network Compression and Distance Measures between
Probabilistic Language Models

SUZUKI, Atsushi
Jing WANG

Outline

Introduction

Preliminaries: Mathematical Notations

Neural Network Compression (Model Compression)

Divergence between Probabilistic Language Models

Summary

2/54

Introduction

1.1 Review of the Previous Lecture

In the previous lecture, we rigorously defined and calculated frameworks for the
automatic and quantitative evaluation of a single probabilistic language
model.

We covered:

• Perplexity

• Accuracy of the most likely option in multiple-choice questions

• Various metrics for string output (EM/F1, BLEU, ROUGE, chrF, BERTScore,
numerical Accuracy)

3/54

1.1 Review of the Previous Lecture

In the previous lecture, we rigorously defined and calculated frameworks for the
automatic and quantitative evaluation of a single probabilistic language
model.

We covered:

• Perplexity

• Accuracy of the most likely option in multiple-choice questions

• Various metrics for string output (EM/F1, BLEU, ROUGE, chrF, BERTScore,
numerical Accuracy)

3/54

1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

• Explain the motivation and methods to reduce the scale (model
compression) of a neural network while maintaining its properties as a
function.

• When a probabilistic language model is modified, evaluate the amount of
change from the original model in a mathematically rigorous and
quantitative manner.

4/54

1.2 Learning Outcomes for This Lecture

By the end of this lecture, you should be able to:

• Explain the motivation and methods to reduce the scale (model
compression) of a neural network while maintaining its properties as a
function.

• When a probabilistic language model is modified, evaluate the amount of
change from the original model in a mathematically rigorous and
quantitative manner.

4/54

Preliminaries: Mathematical
Notations

2. Preliminaries: Mathematical Notations

Set:

• Sets: A
• Membership: x ∈ A
• Empty set: {}
• Roster notation: {a, b, c}
• Set-builder: {x ∈ A|P (x)}
• Cardinality: |A|
• Real numbers: R,R>0,R≥0

• Integers: Z,Z>0,Z≥0

• Integer range: [1, k]Z := {1, . . . , k}

Function:

• f : X → Y : f maps from X to Y.

• y = f(x): The output of f for input x.

Definition:

• (LHS) := (RHS): Left side is defined
by the right side.

5/54

2. Preliminaries: Mathematical Notations

Sequence: Denoted by a = (a1, a2, . . .).

• A function a : [1, n]Z → A.

• Length is denoted by |a|.

Vector: Denoted by v.

• A column of numbers, v ∈ Rn.

• i-th element is vi.

Matrix: Denoted by A.

• m× n matrix: A ∈ Rm,n.

• (i, j)-th element is ai,j .

• Transpose: A⊤.

Tensor: Denoted by A.

• Simply a multi-dimensional array.

• Vector → 1st-order, Matrix →
2nd-order.

6/54

Neural Network Compression
(Model Compression)

3.1 Revisiting the Formulation of AI as Function Learning

The primary goal of AI was to learn an appropriate relationship (function)
between inputs and outputs.

However, even after a good function has been obtained, there is a strong practical
motivation to modify it to reduce implementation resources (memory,
computational complexity, latency) while preserving the input-output
relationship of that function as much as possible.

This process is what we call model compression.

7/54

3.1 Revisiting the Formulation of AI as Function Learning

The primary goal of AI was to learn an appropriate relationship (function)
between inputs and outputs.

However, even after a good function has been obtained, there is a strong practical
motivation to modify it to reduce implementation resources (memory,
computational complexity, latency) while preserving the input-output
relationship of that function as much as possible.

This process is what we call model compression.

7/54

3.1 Revisiting the Formulation of AI as Function Learning

The primary goal of AI was to learn an appropriate relationship (function)
between inputs and outputs.

However, even after a good function has been obtained, there is a strong practical
motivation to modify it to reduce implementation resources (memory,
computational complexity, latency) while preserving the input-output
relationship of that function as much as possible.

This process is what we call model compression.

7/54

3.2 Motivation and Overview of Compression

Even when a good function f has already been obtained, there is motivation to
make the model’s representation (parameterization) more lightweight while
preserving the function values (input-output relationship).

Representative methods include:

• Low-precision floating point

• Quantization

• Model distillation [9,6,5,4,2]

8/54

3.2 Motivation and Overview of Compression

Even when a good function f has already been obtained, there is motivation to
make the model’s representation (parameterization) more lightweight while
preserving the function values (input-output relationship).

Representative methods include:

• Low-precision floating point

• Quantization

• Model distillation [9,6,5,4,2]

8/54

3.3 Rigorous Definition of Low-precision floating point

Definition (Generalized Low-Precision Real Number System and Rounding
Operator)

Let dparam ∈ Z>0. For each index i ∈ {1, . . . , dparam}, we are given a finite set
Fi ⊂ R as a floating-point format and a rounding operator Ri : R → Fi.

The post-low-precision format for each component is F′
i ⊂ R with rounding

operator R′
i : R → F′

i.

The generalized low-precision mapping Φfp : Rdparam → F ′ is defined as

Φfp(θ) :=
(
R′

1(θ1), R
′
2(θ2), . . . , R

′
dparam(θdparam)

)
(1)

The method of replacing θ with Φfp(θ) is called low-precision conversion.

9/54

3.3 Rigorous Definition of Low-precision floating point

Definition (Generalized Low-Precision Real Number System and Rounding
Operator)

Let dparam ∈ Z>0. For each index i ∈ {1, . . . , dparam}, we are given a finite set
Fi ⊂ R as a floating-point format and a rounding operator Ri : R → Fi.

The post-low-precision format for each component is F′
i ⊂ R with rounding

operator R′
i : R → F′

i.

The generalized low-precision mapping Φfp : Rdparam → F ′ is defined as

Φfp(θ) :=
(
R′

1(θ1), R
′
2(θ2), . . . , R

′
dparam(θdparam)

)
(1)

The method of replacing θ with Φfp(θ) is called low-precision conversion.

9/54

3.3 Rigorous Definition of Low-precision floating point

Definition (Generalized Low-Precision Real Number System and Rounding
Operator)

Let dparam ∈ Z>0. For each index i ∈ {1, . . . , dparam}, we are given a finite set
Fi ⊂ R as a floating-point format and a rounding operator Ri : R → Fi.

The post-low-precision format for each component is F′
i ⊂ R with rounding

operator R′
i : R → F′

i.

The generalized low-precision mapping Φfp : Rdparam → F ′ is defined as

Φfp(θ) :=
(
R′

1(θ1), R
′
2(θ2), . . . , R

′
dparam(θdparam)

)
(1)

The method of replacing θ with Φfp(θ) is called low-precision conversion.

9/54

3.3 Rigorous Definition of Low-precision floating point

Remark

Equations allow for a mixed type where the format differs for each element
(per-parameter).

In mixed-precision training, different formats Fi are assigned to gradients,
gradient accumulations, weights, and activations to reduce computational
resources [9].

10/54

3.3 Rigorous Definition of Low-precision floating point

Remark

Equations allow for a mixed type where the format differs for each element
(per-parameter).

In mixed-precision training, different formats Fi are assigned to gradients,
gradient accumulations, weights, and activations to reduce computational
resources [9].

10/54

3.4 Rigorous Definition of Quantization

Definition (General Form of Integer Quantization)

Given a parameter vector θ, we partition its indices. For each partition, we define
a quantization mapping Qj and a dequantization mapping Q̃j .

Qj(x) := clip[−Mj ,Mj]

(
round

(
x
sj

)
+ bj

)
, (2)

Q̃j(n) := sj
(
n− bj

)
(n ∈ Z) (3)

where sj is a scale, bj is a zero-point, and Mj is a clipping value.

The goal is, for a given function fθ, to choose appropriate quantization
parameters to achieve

fQuantize(θ′) ≈ fθ (4)

11/54

3.4 Rigorous Definition of Quantization

Definition (General Form of Integer Quantization)

Given a parameter vector θ, we partition its indices. For each partition, we define
a quantization mapping Qj and a dequantization mapping Q̃j .

Qj(x) := clip[−Mj ,Mj]

(
round

(
x
sj

)
+ bj

)
, (2)

Q̃j(n) := sj
(
n− bj

)
(n ∈ Z) (3)

where sj is a scale, bj is a zero-point, and Mj is a clipping value.

The goal is, for a given function fθ, to choose appropriate quantization
parameters to achieve

fQuantize(θ′) ≈ fθ (4)

11/54

3.4 Rigorous Definition of Quantization

Definition (General Form of Integer Quantization)

Given a parameter vector θ, we partition its indices. For each partition, we define
a quantization mapping Qj and a dequantization mapping Q̃j .

Qj(x) := clip[−Mj ,Mj]

(
round

(
x
sj

)
+ bj

)
, (2)

Q̃j(n) := sj
(
n− bj

)
(n ∈ Z) (3)

where sj is a scale, bj is a zero-point, and Mj is a clipping value.

The goal is, for a given function fθ, to choose appropriate quantization
parameters to achieve

fQuantize(θ′) ≈ fθ (4)
11/54

3.4 Rigorous Definition of Quantization

Remark

Determining quantization parameters (s, b) based on data statistics after training
is called post-training quantization (PTQ). Optimizing them during the training
process is called quantization-aware training (QAT) [6,5].

Remark

In practice, not just parameters but also intermediate outputs (activations) are
often quantized. This allows arithmetic to be performed using faster, more
efficient integer operations [6].

12/54

3.4 Rigorous Definition of Quantization

Remark

Determining quantization parameters (s, b) based on data statistics after training
is called post-training quantization (PTQ). Optimizing them during the training
process is called quantization-aware training (QAT) [6,5].

Remark

In practice, not just parameters but also intermediate outputs (activations) are
often quantized. This allows arithmetic to be performed using faster, more
efficient integer operations [6].

12/54

3.4 Rigorous Definition of Quantization

Example (Manual Calculation Example of Quantize and Dequantize)

Given: dparam = 4, θ′ = (1.20, −0.55, 0.07, 2.31), and a partition
(I1, I2) = ({1, 2}, {3, 4}).

Parameters for partition 1: M1 = 127, s1 = 0.01, b1 = 0.

Parameters for partition 2: M2 = 7, s2 = 0.1, b2 = 1.

Let’s find the quantized vector q and the dequantized vector θ̃.

13/54

3.4 Rigorous Definition of Quantization

Component 1 (i = 1 ∈ I1):

q1 = clip[−127,127]

(
round(1.20/0.01) + 0

)
= clip(120) = 120

θ̃1 = 0.01 · (120− 0) = 1.20

Component 2 (i = 2 ∈ I1):

q2 = clip[−127,127]

(
round(−0.55/0.01)

)
= clip(−55) = −55

θ̃2 = 0.01 · (−55− 0) = −0.55

14/54

3.4 Rigorous Definition of Quantization

Component 1 (i = 1 ∈ I1):

q1 = clip[−127,127]

(
round(1.20/0.01) + 0

)
= clip(120) = 120

θ̃1 = 0.01 · (120− 0) = 1.20

Component 2 (i = 2 ∈ I1):

q2 = clip[−127,127]

(
round(−0.55/0.01)

)
= clip(−55) = −55

θ̃2 = 0.01 · (−55− 0) = −0.55

14/54

3.4 Rigorous Definition of Quantization

Component 3 (i = 3 ∈ I2):

q3 = clip[−7,7]

(
round(0.07/0.1) + 1

)
= clip(1 + 1) = 2

θ̃3 = 0.1 · (2− 1) = 0.1

Component 4 (i = 4 ∈ I2):

q4 = clip[−7,7]

(
round(2.31/0.1) + 1

)
= clip(23 + 1) = clip(24) = 7

θ̃4 = 0.1 · (7− 1) = 0.6

15/54

3.4 Rigorous Definition of Quantization

Component 3 (i = 3 ∈ I2):

q3 = clip[−7,7]

(
round(0.07/0.1) + 1

)
= clip(1 + 1) = 2

θ̃3 = 0.1 · (2− 1) = 0.1

Component 4 (i = 4 ∈ I2):

q4 = clip[−7,7]

(
round(2.31/0.1) + 1

)
= clip(23 + 1) = clip(24) = 7

θ̃4 = 0.1 · (7− 1) = 0.6

15/54

3.4 Rigorous Definition of Quantization

From the calculations, the final vectors are:

Quantized vector:
q = (120, −55, 2, 7)

Dequantized vector:
θ̃ = (1.20, −0.55, 0.1, 0.6)

It can be seen that the large value 2.31 was saturated by the clipping value M2,
increasing the error.

16/54

3.4 Rigorous Definition of Quantization

Exercise (Quantize/Dequantize Exercise)

Let dparam = 3, θ′ = (0.34, −1.26, 0.51). Partition: (I1, I2) = ({1, 3}, {2}).

• For I1: M1 = 15, s1 = 0.02, b1 = 2.

• For I2: M2 = 127, s2 = 0.01, b2 = 0.

Find q and θ̃.

17/54

3.4 Rigorous Definition of Quantization

Answer
Component 1 (i = 1 ∈ I1): q1 = clip[−15,15](round(0.34/0.02) + 2) = 15.
θ̃1 = 0.02 · (15− 2) = 0.26.

Component 2 (i = 2 ∈ I2): q2 = clip[−127,127](round(−1.26/0.01) + 0) = −126.
θ̃2 = 0.01 · (−126− 0) = −1.26.

Component 3 (i = 3 ∈ I1): q3 = clip[−15,15](round(0.51/0.02) + 2) = 15.
θ̃3 = 0.02 · (15− 2) = 0.26.

Final vectors:

q = (15, −126, 15) and θ̃ = (0.26, −1.26, 0.26)

The error is large because the 1st and 3rd components were saturated by
M1 = 15.

18/54

3.4 Rigorous Definition of Quantization

Answer
Component 1 (i = 1 ∈ I1): q1 = clip[−15,15](round(0.34/0.02) + 2) = 15.
θ̃1 = 0.02 · (15− 2) = 0.26.

Component 2 (i = 2 ∈ I2): q2 = clip[−127,127](round(−1.26/0.01) + 0) = −126.
θ̃2 = 0.01 · (−126− 0) = −1.26.

Component 3 (i = 3 ∈ I1): q3 = clip[−15,15](round(0.51/0.02) + 2) = 15.
θ̃3 = 0.02 · (15− 2) = 0.26.

Final vectors:

q = (15, −126, 15) and θ̃ = (0.26, −1.26, 0.26)

The error is large because the 1st and 3rd components were saturated by
M1 = 15.

18/54

3.4 Rigorous Definition of Quantization

Answer
Component 1 (i = 1 ∈ I1): q1 = clip[−15,15](round(0.34/0.02) + 2) = 15.
θ̃1 = 0.02 · (15− 2) = 0.26.

Component 2 (i = 2 ∈ I2): q2 = clip[−127,127](round(−1.26/0.01) + 0) = −126.
θ̃2 = 0.01 · (−126− 0) = −1.26.

Component 3 (i = 3 ∈ I1): q3 = clip[−15,15](round(0.51/0.02) + 2) = 15.
θ̃3 = 0.02 · (15− 2) = 0.26.

Final vectors:

q = (15, −126, 15) and θ̃ = (0.26, −1.26, 0.26)

The error is large because the 1st and 3rd components were saturated by
M1 = 15.

18/54

3.4 Rigorous Definition of Quantization

Answer
Component 1 (i = 1 ∈ I1): q1 = clip[−15,15](round(0.34/0.02) + 2) = 15.
θ̃1 = 0.02 · (15− 2) = 0.26.

Component 2 (i = 2 ∈ I2): q2 = clip[−127,127](round(−1.26/0.01) + 0) = −126.
θ̃2 = 0.01 · (−126− 0) = −1.26.

Component 3 (i = 3 ∈ I1): q3 = clip[−15,15](round(0.51/0.02) + 2) = 15.
θ̃3 = 0.02 · (15− 2) = 0.26.

Final vectors:

q = (15, −126, 15) and θ̃ = (0.26, −1.26, 0.26)

The error is large because the 1st and 3rd components were saturated by
M1 = 15.

18/54

3.5 Rigorous Definition of Knowledge Distillation

Definition (Model Distillation)

Suppose we are given a function fθ (the "teacher" model).

For the purpose of approximating fθ at a lower cost, we use another parametric
function g(·) with a lower-dimensional parameter space (the "student" model).

We then find a suitable parameter vector γ such that gγ becomes a good
approximation of fθ. This process is called model distillation.

Remark

This is a form of model distillation. Another form is dataset distillation, where
the goal is to synthesize a small dataset that captures the learning effect of a
large original dataset.

19/54

3.5 Rigorous Definition of Knowledge Distillation

Definition (Model Distillation)

Suppose we are given a function fθ (the "teacher" model).

For the purpose of approximating fθ at a lower cost, we use another parametric
function g(·) with a lower-dimensional parameter space (the "student" model).

We then find a suitable parameter vector γ such that gγ becomes a good
approximation of fθ. This process is called model distillation.

Remark

This is a form of model distillation. Another form is dataset distillation, where
the goal is to synthesize a small dataset that captures the learning effect of a
large original dataset.

19/54

3.5 Rigorous Definition of Knowledge Distillation

Definition (Model Distillation)

Suppose we are given a function fθ (the "teacher" model).

For the purpose of approximating fθ at a lower cost, we use another parametric
function g(·) with a lower-dimensional parameter space (the "student" model).

We then find a suitable parameter vector γ such that gγ becomes a good
approximation of fθ. This process is called model distillation.

Remark

This is a form of model distillation. Another form is dataset distillation, where
the goal is to synthesize a small dataset that captures the learning effect of a
large original dataset.

19/54

3.5 Rigorous Definition of Knowledge Distillation

Definition (Model Distillation)

Suppose we are given a function fθ (the "teacher" model).

For the purpose of approximating fθ at a lower cost, we use another parametric
function g(·) with a lower-dimensional parameter space (the "student" model).

We then find a suitable parameter vector γ such that gγ becomes a good
approximation of fθ. This process is called model distillation.

Remark

This is a form of model distillation. Another form is dataset distillation, where
the goal is to synthesize a small dataset that captures the learning effect of a
large original dataset.

19/54

Divergence between Probabilistic
Language Models

4. Divergence between Probabilistic Language Models

The core of large language models is a probabilistic language model.

When this is compressed, one becomes concerned about how much it differs from
the original.

This chapter deals with metrics that express how much another probabilistic
language model has diverged when there is a reference probabilistic language
model.

20/54

4. Divergence between Probabilistic Language Models

The core of large language models is a probabilistic language model.

When this is compressed, one becomes concerned about how much it differs from
the original.

This chapter deals with metrics that express how much another probabilistic
language model has diverged when there is a reference probabilistic language
model.

20/54

4. Divergence between Probabilistic Language Models

The core of large language models is a probabilistic language model.

When this is compressed, one becomes concerned about how much it differs from
the original.

This chapter deals with metrics that express how much another probabilistic
language model has diverged when there is a reference probabilistic language
model.

20/54

4.1 A Simple Method: Differences in Individual Evaluations

A simple method is to measure the performance of two models on the same task
(e.g., multiple-choice questions) and compare the difference.

However, if the evaluation is based solely on the answers, it is possible to overlook
cases where the inference processes are significantly different even if the final
answers are the same [1].

Therefore, one might consider directly comparing the probability distributions
constituted by the probabilistic language models.

21/54

4.1 A Simple Method: Differences in Individual Evaluations

A simple method is to measure the performance of two models on the same task
(e.g., multiple-choice questions) and compare the difference.

However, if the evaluation is based solely on the answers, it is possible to overlook
cases where the inference processes are significantly different even if the final
answers are the same [1].

Therefore, one might consider directly comparing the probability distributions
constituted by the probabilistic language models.

21/54

4.1 A Simple Method: Differences in Individual Evaluations

A simple method is to measure the performance of two models on the same task
(e.g., multiple-choice questions) and compare the difference.

However, if the evaluation is based solely on the answers, it is possible to overlook
cases where the inference processes are significantly different even if the final
answers are the same [1].

Therefore, one might consider directly comparing the probability distributions
constituted by the probabilistic language models.

21/54

4.2 Review of Probabilistic Language Models

Definition (Vocabulary and Token Sequence)

The set of possible values a token can take is called the vocabulary, denoted by
V1. We identify V with {1, 2, . . . , D}.

• The set of token sequences of length n is Vn.

• The set of all token sequences of finite length is V∗ = V0 ∪ V1 ∪ V2 ∪ · · · .
• For a sequence t = (t1, . . . , tn), we use notations like t<i for the prefix
(t1, . . . , ti−1).

1In previous lectures, the set of nodes in a neural network was also denoted by V, but since this
lecture does not explicitly describe the graph structure of neural networks, V should always be taken
to refer to the vocabulary.

22/54

4.2 Review of Probabilistic Language Models

Definition (Vocabulary and Token Sequence)

The set of possible values a token can take is called the vocabulary, denoted by
V1. We identify V with {1, 2, . . . , D}.

• The set of token sequences of length n is Vn.

• The set of all token sequences of finite length is V∗ = V0 ∪ V1 ∪ V2 ∪ · · · .
• For a sequence t = (t1, . . . , tn), we use notations like t<i for the prefix
(t1, . . . , ti−1).

1In previous lectures, the set of nodes in a neural network was also denoted by V, but since this
lecture does not explicitly describe the graph structure of neural networks, V should always be taken
to refer to the vocabulary.

22/54

4.2 Review of Probabilistic Language Models

Definition (Probabilistic Language Model (most general form))

A probabilistic language model is a function P (·|·) that, given any finite-length
token sequence t ∈ V∗, returns the probability mass function of the next token,
conditioned on it.

More formally, for any t ∈ V∗, the following must hold:∑
v∈V

P (v | t) = 1 (5)

Since a probabilistic language model is a conditional probability mass function, the
problem reduces to quantifying the divergence between general probability mass
functions.

23/54

4.2 Review of Probabilistic Language Models

Definition (Probabilistic Language Model (most general form))

A probabilistic language model is a function P (·|·) that, given any finite-length
token sequence t ∈ V∗, returns the probability mass function of the next token,
conditioned on it.

More formally, for any t ∈ V∗, the following must hold:∑
v∈V

P (v | t) = 1 (5)

Since a probabilistic language model is a conditional probability mass function, the
problem reduces to quantifying the divergence between general probability mass
functions.

23/54

4.2 Review of Probabilistic Language Models

Definition (Probabilistic Language Model (most general form))

A probabilistic language model is a function P (·|·) that, given any finite-length
token sequence t ∈ V∗, returns the probability mass function of the next token,
conditioned on it.

More formally, for any t ∈ V∗, the following must hold:∑
v∈V

P (v | t) = 1 (5)

Since a probabilistic language model is a conditional probability mass function, the
problem reduces to quantifying the divergence between general probability mass
functions.

23/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Given a reference probability mass function P and another one Q, we want to
measure how much Q diverges from P .

If Q is close to P , then for an outcome z where P (z) is large, Q(z) should also be
large.

This suggests a divergence criterion of the form:

EZ∼P

[
ϕ
(
Q(Z)

)]
− C (6)

using a monotonically decreasing function ϕ to penalize small probability masses.

24/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Given a reference probability mass function P and another one Q, we want to
measure how much Q diverges from P .

If Q is close to P , then for an outcome z where P (z) is large, Q(z) should also be
large.

This suggests a divergence criterion of the form:

EZ∼P

[
ϕ
(
Q(Z)

)]
− C (6)

using a monotonically decreasing function ϕ to penalize small probability masses.

24/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Given a reference probability mass function P and another one Q, we want to
measure how much Q diverges from P .

If Q is close to P , then for an outcome z where P (z) is large, Q(z) should also be
large.

This suggests a divergence criterion of the form:

EZ∼P

[
ϕ
(
Q(Z)

)]
− C (6)

using a monotonically decreasing function ϕ to penalize small probability masses.

24/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Definition (Axiomatization of Divergence Functional)

For ∆ϕ(P ∥ Q) := EZ∼P

[
ϕ
(
Q(Z)

)]
− C, we impose:

(A1) Reflexivity: ∆ϕ(P ∥ P) = 0.

(A2) Non-negativity: ∆ϕ(P ∥ Q) ≥ 0, with equality iff P = Q.

(A3) Continuity: ∆ϕ(P ∥ Q) is continuous in Q.

(A4) Additivity over independent products: For product distributions P1 ⊗ P2

and Q1 ⊗Q2,

∆ϕ(P1 ⊗ P2 ∥ Q1 ⊗Q2) = ∆ϕ(P1 ∥ Q1) + ∆ϕ(P2 ∥ Q2)

25/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Theorem (Uniqueness of KL Divergence)

For a monotonically decreasing continuous function ϕ satisfying axioms (A1) ‒
(A4), there exist constants c > 0 and B such that

ϕ(u) = − c log u+B (u ∈ (0, 1]) (7)

This implies that the divergence must be proportional to the KL divergence:

∆ϕ(P ∥ Q) = cEP

[
log

P (Z)

Q(Z)

]
= cDKL(P ∥ Q) (8)

26/54

4.3 How to Quantify the Divergence of Probability Mass Functions

Theorem (Uniqueness of KL Divergence)

For a monotonically decreasing continuous function ϕ satisfying axioms (A1) ‒
(A4), there exist constants c > 0 and B such that

ϕ(u) = − c log u+B (u ∈ (0, 1]) (7)

This implies that the divergence must be proportional to the KL divergence:

∆ϕ(P ∥ Q) = cEP

[
log

P (Z)

Q(Z)

]
= cDKL(P ∥ Q) (8)

26/54

4.3 How to Quantify the Divergence of Probability Mass Functions

The proof is insightful:

• Step 1: The additivity axiom (A4) forces ϕ to satisfy a functional equation:
ϕ(uv)− ϕ(u)− ϕ(v) = constant.

• Step 2: This functional equation, combined with the continuity axiom (A3),
implies that ϕ must be a logarithmic function. This is a classic result related to
Cauchy’s functional equation.

• Step 3: The reflexivity (A1) and non-negativity (A2) axioms fix the
constants and ensure the result is proportional to the standard KL divergence,
with a positive coefficient.

27/54

4.3 How to Quantify the Divergence of Probability Mass Functions

The proof is insightful:

• Step 1: The additivity axiom (A4) forces ϕ to satisfy a functional equation:
ϕ(uv)− ϕ(u)− ϕ(v) = constant.

• Step 2: This functional equation, combined with the continuity axiom (A3),
implies that ϕ must be a logarithmic function. This is a classic result related to
Cauchy’s functional equation.

• Step 3: The reflexivity (A1) and non-negativity (A2) axioms fix the
constants and ensure the result is proportional to the standard KL divergence,
with a positive coefficient.

27/54

4.3 How to Quantify the Divergence of Probability Mass Functions

The proof is insightful:

• Step 1: The additivity axiom (A4) forces ϕ to satisfy a functional equation:
ϕ(uv)− ϕ(u)− ϕ(v) = constant.

• Step 2: This functional equation, combined with the continuity axiom (A3),
implies that ϕ must be a logarithmic function. This is a classic result related to
Cauchy’s functional equation.

• Step 3: The reflexivity (A1) and non-negativity (A2) axioms fix the
constants and ensure the result is proportional to the standard KL divergence,
with a positive coefficient.

27/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

Definition (KL Divergence (for pmfs))

Let P,Q be two probability mass functions on a finite set S. The KL divergence
(relative entropy) is defined as

DKL(P ∥ Q) :=
∑
z∈S

P (z) log

(
P (z)

Q(z)

)
∈ [0,∞] (9)

It is always non-negative, and DKL(P ∥ Q) = 0 if and only if P = Q [7,3].

28/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

Example (Complete Numerical Example of KL)

Consider the probability distributions on {a, b, c}:

P = (0.5, 0.3, 0.2)

Q = (0.4, 0.4, 0.2)

From the definition:

DKL(P ∥ Q) =
∑

x∈{a,b,c}

P (x) log
P (x)

Q(x)

= 0.5 log
0.5

0.4
+ 0.3 log

0.3

0.4
+ 0.2 log

0.2

0.2
(10)

29/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

Example (Complete Numerical Example of KL)

Consider the probability distributions on {a, b, c}:

P = (0.5, 0.3, 0.2)

Q = (0.4, 0.4, 0.2)

From the definition:

DKL(P ∥ Q) =
∑

x∈{a,b,c}

P (x) log
P (x)

Q(x)

= 0.5 log
0.5

0.4
+ 0.3 log

0.3

0.4
+ 0.2 log

0.2

0.2
(10)

29/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

The last term is 0.2 log(1) = 0.

Using the natural logarithm:

0.5 log(1.25) ≈ 0.5× 0.22314 ≈ 0.11157

0.3 log(0.75) ≈ 0.3× (−0.28768) ≈ −0.08630

Summing them up:

DKL(P ∥ Q) ≈ 0.11157− 0.08630 = 0.02527 [nats] (11)

30/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

The last term is 0.2 log(1) = 0.

Using the natural logarithm:

0.5 log(1.25) ≈ 0.5× 0.22314 ≈ 0.11157

0.3 log(0.75) ≈ 0.3× (−0.28768) ≈ −0.08630

Summing them up:

DKL(P ∥ Q) ≈ 0.11157− 0.08630 = 0.02527 [nats] (11)

30/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

The last term is 0.2 log(1) = 0.

Using the natural logarithm:

0.5 log(1.25) ≈ 0.5× 0.22314 ≈ 0.11157

0.3 log(0.75) ≈ 0.3× (−0.28768) ≈ −0.08630

Summing them up:

DKL(P ∥ Q) ≈ 0.11157− 0.08630 = 0.02527 [nats] (11)

30/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

Exercise (Numerical Calculation of KL)

On the vocabulary {x1, x2, x3}, let

P = (0.2, 0.5, 0.3), Q = (0.1, 0.7, 0.2)

Calculate DKL(P ∥ Q) using the natural logarithm.

31/54

4.4 Definition of Kullback ‒ Leibler (KL) divergence

Answer

DKL(P ∥ Q) = 0.2 log
0.2

0.1
+ 0.5 log

0.5

0.7
+ 0.3 log

0.3

0.2

= 0.2 log 2 + 0.5 log(5/7) + 0.3 log(3/2)

Numerically, this is:

≈ 0.2× (0.69315) + 0.5× (−0.33647) + 0.3× (0.40547)

≈ 0.13863− 0.16824 + 0.12164 ≈ 0.09203 [nats]

32/54

4.5 Extension of KL to Language Models (Conditional Distributions)

How do we apply KL divergence to probabilistic language models, which are
conditional distributions?

There are two main, virtually equivalent ways.

33/54

4.5 Extension of KL to Language Models (Conditional Distributions)

How do we apply KL divergence to probabilistic language models, which are
conditional distributions? There are two main, virtually equivalent ways.

33/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Definition (A. KL based on Joint Distribution)

For a fixed length n, we can define the joint distributions over sequences of
length n induced by the language models P and Q.

P (n)(t1:n) :=
n∏

i=1

P (ti | t<i) (12)

(and similarly for Q(n)).

Then we define the KL divergence between these two joint distributions:

DKL

(
P (n) ∥ Q(n)

)
=

∑
t1:n

P (n)(t1:n) log
P (n)(t1:n)

Q(n)(t1:n)
(13)

34/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Definition (A. KL based on Joint Distribution)

For a fixed length n, we can define the joint distributions over sequences of
length n induced by the language models P and Q.

P (n)(t1:n) :=
n∏

i=1

P (ti | t<i) (12)

(and similarly for Q(n)).

Then we define the KL divergence between these two joint distributions:

DKL

(
P (n) ∥ Q(n)

)
=

∑
t1:n

P (n)(t1:n) log
P (n)(t1:n)

Q(n)(t1:n)
(13)

34/54

4.5 Extension of KL to Language Models (Conditional Distributions)

This joint KL can be decomposed using a chain rule.

Proposition (Chain Rule for KL Divergence)

For any n ∈ Z>0,

DKL

(
P (n) ∥ Q(n)

)
=

n∑
i=1

Et<i∼P (i−1)

[
DKL

(
P (· | t<i) ∥ Q(· | t<i)

)]
(14)

This is the sum of expected conditional KL divergences at each step.

35/54

4.5 Extension of KL to Language Models (Conditional Distributions)

This joint KL can be decomposed using a chain rule.

Proposition (Chain Rule for KL Divergence)

For any n ∈ Z>0,

DKL

(
P (n) ∥ Q(n)

)
=

n∑
i=1

Et<i∼P (i−1)

[
DKL

(
P (· | t<i) ∥ Q(· | t<i)

)]
(14)

This is the sum of expected conditional KL divergences at each step.

35/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Definition (B. KL based on a Dataset)

A more practical approach is to compute the average KL divergence over a
validation dataset D = {t(j)}Nj=1.

We average the KL divergence of the next-token predictions over all positions in
all sequences in the dataset:

D̂D
KL(P ∥ Q) :=

1

|D|tokens

N∑
j=1

|y(j)|∑
i=1

DKL

(
P (· | context) ∥ Q(· | context)

)
. (15)

36/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Definition (B. KL based on a Dataset)

A more practical approach is to compute the average KL divergence over a
validation dataset D = {t(j)}Nj=1.

We average the KL divergence of the next-token predictions over all positions in
all sequences in the dataset:

D̂D
KL(P ∥ Q) :=

1

|D|tokens

N∑
j=1

|y(j)|∑
i=1

DKL

(
P (· | context) ∥ Q(· | context)

)
. (15)

36/54

4.5 Extension of KL to Language Models (Conditional Distributions)

These two definitions are closely related.

Proposition (Virtual Equivalence of A and B)

If the dataset D is generated i.i.d. according to the model P , then the expected
value of the dataset-based KL divergence (B) is equal to the per-token joint KL
divergence (A).

ED∼(P (n))⊗N

[
D̂D

KL(P ∥ Q)
]
=

1

n
DKL

(
P (n) ∥ Q(n)

)
. (16)

37/54

4.5 Extension of KL to Language Models (Conditional Distributions)

These two definitions are closely related.

Proposition (Virtual Equivalence of A and B)

If the dataset D is generated i.i.d. according to the model P , then the expected
value of the dataset-based KL divergence (B) is equal to the per-token joint KL
divergence (A).

ED∼(P (n))⊗N

[
D̂D

KL(P ∥ Q)
]
=

1

n
DKL

(
P (n) ∥ Q(n)

)
. (16)

37/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Example (Numerical Example of Sequential KL (length 2))

Let V = {A,B}, n = 2. The conditional distributions are:

P (A | ()) = 0.6, P (A | A) = 0.7, P (A | B) = 0.2

Q(A | ()) = 0.5, Q(A | A) = 0.6, Q(A | B) = 0.3

(The probabilities for B are just 1 minus these values). Let’s calculate
DKL(P

(2) ∥ Q(2)).

38/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Step 1: KL for the first token (i = 1)

The context is the empty sequence ().

DKL

(
P (· | ()) ∥ Q(· | ())

)
= 0.6 log

0.6

0.5
+ 0.4 log

0.4

0.5

≈ 0.0204

39/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Step 2: Expected KL for the second token (i = 2)

We need to average the conditional KL over the first token, drawn from P (· | ()).

Et1∼P

[
DKL

(
P (· | t1) ∥ Q(· | t1)

)]
= P (A | ()) ·DKL

(
P (· | A) ∥ Q(· | A)

)
+P (B | ()) ·DKL

(
P (· | B) ∥ Q(· | B)

)

= 0.6 ·
(
0.7 log

0.7

0.6
+ 0.3 log

0.3

0.4

)
+0.4 ·

(
0.2 log

0.2

0.3
+ 0.8 log

0.8

0.7

)
≈ 0.0125

40/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Step 2: Expected KL for the second token (i = 2)

We need to average the conditional KL over the first token, drawn from P (· | ()).

Et1∼P

[
DKL

(
P (· | t1) ∥ Q(· | t1)

)]
= P (A | ()) ·DKL

(
P (· | A) ∥ Q(· | A)

)
+P (B | ()) ·DKL

(
P (· | B) ∥ Q(· | B)

)

= 0.6 ·
(
0.7 log

0.7

0.6
+ 0.3 log

0.3

0.4

)
+0.4 ·

(
0.2 log

0.2

0.3
+ 0.8 log

0.8

0.7

)
≈ 0.0125

40/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Step 3: Total KL Divergence

Summing the results from both steps:

DKL(P
(2) ∥ Q(2)) = (KL at i = 1) + (Expected KL at i = 2)

≈ 0.0204 + 0.0125

= 0.0329

41/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Exercise (Sequential KL Calculation Practice)

Let V = {0, 1}, n = 2.

P (1 | ()) = 0.3, P (1 | 1) = 0.6, P (1 | 0) = 0.2

Q(1 | ()) = 0.4, Q(1 | 1) = 0.5, Q(1 | 0) = 0.3

Find DKL(P
(2) ∥ Q(2)).

42/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Answer
First token (i = 1):

DKL(P (·|()) ∥ Q(·|())) = 0.3 log
0.3

0.4
+ 0.7 log

0.7

0.6
≈ 0.0224

Expected KL for second token (i = 2):

Et1∼P = 0.3 ·
[
0.6 log

0.6

0.5
+ 0.4 log

0.4

0.5

]
+ 0.7 ·

[
0.2 log

0.2

0.3
+ 0.8 log

0.8

0.7

]
≈ 0.3 · (0.0201) + 0.7 · (−0.0033) ≈ 0.0037

Total KL:
DKL(P

(2) ∥ Q(2)) ≈ 0.0224 + 0.0037 = 0.0261 [nats]

(Note: previous lecture note answer 0.019 was a calculation error).

43/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Answer
First token (i = 1):

DKL(P (·|()) ∥ Q(·|())) = 0.3 log
0.3

0.4
+ 0.7 log

0.7

0.6
≈ 0.0224

Expected KL for second token (i = 2):

Et1∼P = 0.3 ·
[
0.6 log

0.6

0.5
+ 0.4 log

0.4

0.5

]
+ 0.7 ·

[
0.2 log

0.2

0.3
+ 0.8 log

0.8

0.7

]
≈ 0.3 · (0.0201) + 0.7 · (−0.0033) ≈ 0.0037

Total KL:
DKL(P

(2) ∥ Q(2)) ≈ 0.0224 + 0.0037 = 0.0261 [nats]

(Note: previous lecture note answer 0.019 was a calculation error).

43/54

4.5 Extension of KL to Language Models (Conditional Distributions)

Answer
First token (i = 1):

DKL(P (·|()) ∥ Q(·|())) = 0.3 log
0.3

0.4
+ 0.7 log

0.7

0.6
≈ 0.0224

Expected KL for second token (i = 2):

Et1∼P = 0.3 ·
[
0.6 log

0.6

0.5
+ 0.4 log

0.4

0.5

]
+ 0.7 ·

[
0.2 log

0.2

0.3
+ 0.8 log

0.8

0.7

]
≈ 0.3 · (0.0201) + 0.7 · (−0.0033) ≈ 0.0037

Total KL:
DKL(P

(2) ∥ Q(2)) ≈ 0.0224 + 0.0037 = 0.0261 [nats]

(Note: previous lecture note answer 0.019 was a calculation error).
43/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

KL divergence is not symmetric. A symmetric version is the JS divergence.

Definition (JS Divergence)

For the mixture distribution M := 1
2(P +Q) of P,Q,

DJS(P ∥ Q) := 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M) (17)

is called the Jensen ‒ Shannon divergence. DJS is symmetric and bounded
[0, log 2] [8].

Remark

The square root of the JS divergence,
√
DJS, satisfies the axioms of a metric,

including the triangle inequality [8].

44/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

KL divergence is not symmetric. A symmetric version is the JS divergence.

Definition (JS Divergence)

For the mixture distribution M := 1
2(P +Q) of P,Q,

DJS(P ∥ Q) := 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M) (17)

is called the Jensen ‒ Shannon divergence. DJS is symmetric and bounded
[0, log 2] [8].

Remark

The square root of the JS divergence,
√
DJS, satisfies the axioms of a metric,

including the triangle inequality [8].

44/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

KL divergence is not symmetric. A symmetric version is the JS divergence.

Definition (JS Divergence)

For the mixture distribution M := 1
2(P +Q) of P,Q,

DJS(P ∥ Q) := 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M) (17)

is called the Jensen ‒ Shannon divergence. DJS is symmetric and bounded
[0, log 2] [8].

Remark

The square root of the JS divergence,
√
DJS, satisfies the axioms of a metric,

including the triangle inequality [8].

44/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Example (Complete Numerical Example of JS)

Using P,Q from the KL example:

P = (0.5, 0.3, 0.2)

Q = (0.4, 0.4, 0.2)

First, find the mixture distribution M = 1
2(P +Q).

M = (0.45, 0.35, 0.2)

Now, calculate DJS(P ∥ Q) = 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M).

45/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Example (Complete Numerical Example of JS)

Using P,Q from the KL example:

P = (0.5, 0.3, 0.2)

Q = (0.4, 0.4, 0.2)

First, find the mixture distribution M = 1
2(P +Q).

M = (0.45, 0.35, 0.2)

Now, calculate DJS(P ∥ Q) = 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M).

45/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Example (Complete Numerical Example of JS)

Using P,Q from the KL example:

P = (0.5, 0.3, 0.2)

Q = (0.4, 0.4, 0.2)

First, find the mixture distribution M = 1
2(P +Q).

M = (0.45, 0.35, 0.2)

Now, calculate DJS(P ∥ Q) = 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M).

45/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Step 1: Calculate DKL(P ∥ M):

DKL(P ∥ M) = 0.5 log
0.5

0.45
+ 0.3 log

0.3

0.35
+ 0.2 log

0.2

0.2

≈ 0.0527− 0.0463 + 0 = 0.0064

Step 2: Calculate DKL(Q ∥ M):

DKL(Q ∥ M) = 0.4 log
0.4

0.45
+ 0.4 log

0.4

0.35
+ 0.2 log

0.2

0.2

≈ −0.0472 + 0.0536 + 0 = 0.0064

Step 3: Average them:

DJS(P ∥ Q) =
1

2
(0.0064 + 0.0064) = 0.0064 [nats]

46/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Step 1: Calculate DKL(P ∥ M):

DKL(P ∥ M) = 0.5 log
0.5

0.45
+ 0.3 log

0.3

0.35
+ 0.2 log

0.2

0.2

≈ 0.0527− 0.0463 + 0 = 0.0064

Step 2: Calculate DKL(Q ∥ M):

DKL(Q ∥ M) = 0.4 log
0.4

0.45
+ 0.4 log

0.4

0.35
+ 0.2 log

0.2

0.2

≈ −0.0472 + 0.0536 + 0 = 0.0064

Step 3: Average them:

DJS(P ∥ Q) =
1

2
(0.0064 + 0.0064) = 0.0064 [nats]

46/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Step 1: Calculate DKL(P ∥ M):

DKL(P ∥ M) = 0.5 log
0.5

0.45
+ 0.3 log

0.3

0.35
+ 0.2 log

0.2

0.2

≈ 0.0527− 0.0463 + 0 = 0.0064

Step 2: Calculate DKL(Q ∥ M):

DKL(Q ∥ M) = 0.4 log
0.4

0.45
+ 0.4 log

0.4

0.35
+ 0.2 log

0.2

0.2

≈ −0.0472 + 0.0536 + 0 = 0.0064

Step 3: Average them:

DJS(P ∥ Q) =
1

2
(0.0064 + 0.0064) = 0.0064 [nats] 46/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Exercise (Numerical Calculation of JS)

For P = (0.2, 0.5, 0.3) and Q = (0.1, 0.7, 0.2) from the KL exercise, find
DJS(P ∥ Q).

47/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Answer

Mixture: M = 1
2(P +Q) = (0.15, 0.6, 0.25).

KLs:

DKL(P ∥ M) = 0.2 log
0.2

0.15
+ 0.5 log

0.5

0.6
+ 0.3 log

0.3

0.25

≈ 0.0575− 0.0912 + 0.0547 = 0.021

DKL(Q ∥ M) = 0.1 log
0.1

0.15
+ 0.7 log

0.7

0.6
+ 0.2 log

0.2

0.25

≈ −0.0405 + 0.1079− 0.0446 = 0.0228

JS Divergence:

DJS(P ∥ Q) =
1

2
(0.021 + 0.0228) ≈ 0.0219 [nats]

(Note: previous lecture note answer 0.016 was a calculation error).

48/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Answer

Mixture: M = 1
2(P +Q) = (0.15, 0.6, 0.25).

KLs:

DKL(P ∥ M) = 0.2 log
0.2

0.15
+ 0.5 log

0.5

0.6
+ 0.3 log

0.3

0.25

≈ 0.0575− 0.0912 + 0.0547 = 0.021

DKL(Q ∥ M) = 0.1 log
0.1

0.15
+ 0.7 log

0.7

0.6
+ 0.2 log

0.2

0.25

≈ −0.0405 + 0.1079− 0.0446 = 0.0228

JS Divergence:

DJS(P ∥ Q) =
1

2
(0.021 + 0.0228) ≈ 0.0219 [nats]

(Note: previous lecture note answer 0.016 was a calculation error).

48/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Answer

Mixture: M = 1
2(P +Q) = (0.15, 0.6, 0.25).

KLs:

DKL(P ∥ M) = 0.2 log
0.2

0.15
+ 0.5 log

0.5

0.6
+ 0.3 log

0.3

0.25

≈ 0.0575− 0.0912 + 0.0547 = 0.021

DKL(Q ∥ M) = 0.1 log
0.1

0.15
+ 0.7 log

0.7

0.6
+ 0.2 log

0.2

0.25

≈ −0.0405 + 0.1079− 0.0446 = 0.0228

JS Divergence:

DJS(P ∥ Q) =
1

2
(0.021 + 0.0228) ≈ 0.0219 [nats]

(Note: previous lecture note answer 0.016 was a calculation error).

48/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Similar to KL, JS divergence can be extended to language models by considering
either the joint distribution over sequences or by averaging over a dataset.

A similar chain rule also holds, decomposing the total JS divergence into a sum of
expected conditional JS divergences at each position.

DJS

(
P (n) ∥ Q(n)

)
=

n∑
i=1

{
1
2 EP (i−1)

[
DKL(P |prefix) ∥ M |prefix)

]
+1

2 EQ(i−1)

[
DKL(Q|prefix) ∥ M |prefix)

]}

49/54

4.6 Definition of Jensen ‒ Shannon (JS) divergence

Similar to KL, JS divergence can be extended to language models by considering
either the joint distribution over sequences or by averaging over a dataset.

A similar chain rule also holds, decomposing the total JS divergence into a sum of
expected conditional JS divergences at each position.

DJS

(
P (n) ∥ Q(n)

)
=

n∑
i=1

{
1
2 EP (i−1)

[
DKL(P |prefix) ∥ M |prefix)

]
+1

2 EQ(i−1)

[
DKL(Q|prefix) ∥ M |prefix)

]}

49/54

Summary

5. Summary

Let’s summarize the key takeaways from today’s lecture.

• We organized the motivation for model compression: reducing the scale of a
model while preserving its input-output relationship as a function. We looked
at methods like low-precision arithmetic, quantization, and distillation.

• We quantified the difference between probabilistic language models
before and after modification using information-theoretic divergences.

• We showed that from a few natural axioms, the KL divergence is uniquely
derived as the measure of divergence. We also introduced its symmetrized
version, the JS divergence.

50/54

5. Summary

Let’s summarize the key takeaways from today’s lecture.

• We organized the motivation for model compression: reducing the scale of a
model while preserving its input-output relationship as a function. We looked
at methods like low-precision arithmetic, quantization, and distillation.

• We quantified the difference between probabilistic language models
before and after modification using information-theoretic divergences.

• We showed that from a few natural axioms, the KL divergence is uniquely
derived as the measure of divergence. We also introduced its symmetrized
version, the JS divergence.

50/54

5. Summary

Let’s summarize the key takeaways from today’s lecture.

• We organized the motivation for model compression: reducing the scale of a
model while preserving its input-output relationship as a function. We looked
at methods like low-precision arithmetic, quantization, and distillation.

• We quantified the difference between probabilistic language models
before and after modification using information-theoretic divergences.

• We showed that from a few natural axioms, the KL divergence is uniquely
derived as the measure of divergence. We also introduced its symmetrized
version, the JS divergence.

50/54

References i

[1] Rishiraj Acharya.
Why maybe we’re measuring llm compression wrong.
https://huggingface.co/blog/rishiraj/kld-guided-quantization, 2025.
Blog article.

[2] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil.
Model compression.
In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 535–541, 2006.

[3] Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory.
Wiley-Interscience, 2 edition, 2006.

51/54

https://huggingface.co/blog/rishiraj/kld-guided-quantization

References ii

[4] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.
Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015.
arXiv:1503.02531.

[5] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio.
Quantized neural networks: Training neural networks with low precision
weights and activations.
Journal of Machine Learning Research, 18(187):1–30, 2018.
Earlier version: arXiv:1609.07061 (2016).

52/54

References iii

[6] Benoit Jacob, Skirmantas Kligys, Bo Chen, et al.
Quantization and training of neural networks for efficient
integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2704–2713, 2018.

[7] Solomon Kullback and Richard A. Leibler.
On information and sufficiency.
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[8] Jianhua Lin.
Divergence measures based on the shannon entropy.
IEEE Transactions on Information Theory, 37(1):145–151, 1991.

53/54

References iv

[9] Paulius Micikevicius, Sharan Narang, Jonah Alben, et al.
Mixed precision training.
In International Conference on Learning Representations (ICLR) Workshop,
2018.
arXiv:1710.03740.

54/54

