
AI Applications Lecture 11

Introduction to Image Generation AI

SUZUKI, Atsushi
Jing WANG

Outline

Introduction

Preparation: Mathematical Notations

Characteristics of Image Generation as a Task

Why Probability Mass Function (PMF)-based Methods are Disadvantageous for
Image Generation

Practical Pipeline for text-to-image

Summary and Future Plans

2/41

Introduction

1.1 Recap of the First Half (Lectures 5–10)

In the first half of this course (Lectures 5 to 10), we focused on Natural Language
Generation, covering concepts such as the pipeline, tokenization, sampling,
special tokens, and chat templates.

The core perspective was that the pipeline, as a composition of multiple
functions, plays the main role in practical applications, rather than a single
neural network.

3/41

1.1 Recap of the First Half (Lectures 5–10)

In the first half of this course (Lectures 5 to 10), we focused on Natural Language
Generation, covering concepts such as the pipeline, tokenization, sampling,
special tokens, and chat templates.

The core perspective was that the pipeline, as a composition of multiple
functions, plays the main role in practical applications, rather than a single
neural network.

3/41

1.2 Learning Outcomes of This Lecture

Through this lecture, students will be able to explain the following:

• Explain the mathematical characteristics of the image generation task and
how it differs from natural language generation.

• Explain what combination of components constitutes practical
text-to-image AI.

• Explain why practical text-to-image AI is structured the way it is, based on its
task characteristics.

4/41

1.2 Learning Outcomes of This Lecture

Through this lecture, students will be able to explain the following:

• Explain the mathematical characteristics of the image generation task and
how it differs from natural language generation.

• Explain what combination of components constitutes practical
text-to-image AI.

• Explain why practical text-to-image AI is structured the way it is, based on its
task characteristics.

4/41

1.2 Learning Outcomes of This Lecture

Through this lecture, students will be able to explain the following:

• Explain the mathematical characteristics of the image generation task and
how it differs from natural language generation.

• Explain what combination of components constitutes practical
text-to-image AI.

• Explain why practical text-to-image AI is structured the way it is, based on its
task characteristics.

4/41

1.3 Revisiting the Grand Principle

The goal of AI is to learn the appropriate relationship, i.e., a function, between
input and output.

This is the same for both natural language generation and image generation.

5/41

1.3 Revisiting the Grand Principle

The goal of AI is to learn the appropriate relationship, i.e., a function, between
input and output.

This is the same for both natural language generation and image generation.

5/41

Preparation: Mathematical
Notations

2. Preparation: Mathematical Notations

We reiterate the basic notations used in this lecture.

• Definition:
• (LHS) := (RHS): Indicates that the left-hand side is defined by the right-hand

side. For example, a := b indicates that a is defined as b.

• Set:
• Sets are often denoted by uppercase calligraphic letters. Example: A.
• x ∈ A: Indicates that element x belongs to set A.
• {}: The empty set.
• {a, b, c}: The set consisting of elements a, b, c (roster notation).

6/41

2. Preparation: Mathematical Notations

We reiterate the basic notations used in this lecture.

• Definition:
• (LHS) := (RHS): Indicates that the left-hand side is defined by the right-hand

side. For example, a := b indicates that a is defined as b.

• Set:
• Sets are often denoted by uppercase calligraphic letters. Example: A.
• x ∈ A: Indicates that element x belongs to set A.
• {}: The empty set.
• {a, b, c}: The set consisting of elements a, b, c (roster notation).

6/41

2. Preparation: Mathematical Notations

Set (continued):

• {x ∈ A | P (x)}: The set of elements in A for which the proposition P (x) is
true (set-builder notation).

• |A|: The number of elements in set A (in this lecture, generally used only for
finite sets).

• R: The set of all real numbers.
• R>0: The set of all positive real numbers.
• R≥0: The set of all non-negative real numbers.
• Z: The set of all integers.
• Z>0: The set of all positive integers.
• Z≥0: The set of all non-negative integers.
• [1, k]Z: When k is a positive integer, [1, k]Z := {1, 2, . . . , k}. When k = +∞,
[1, k]Z := Z>0.

Function:

• f : X → Y : Indicates that the function f is a map that takes an element from
set X as input and outputs an element from set Y.

• y = f(x): Indicates that the output is y ∈ Y when x ∈ X is input to function f .

7/41

2. Preparation: Mathematical Notations

Set (continued):

• {x ∈ A | P (x)}: The set of elements in A for which the proposition P (x) is
true (set-builder notation).

• |A|: The number of elements in set A (in this lecture, generally used only for
finite sets).

• R: The set of all real numbers.
• R>0: The set of all positive real numbers.
• R≥0: The set of all non-negative real numbers.
• Z: The set of all integers.
• Z>0: The set of all positive integers.
• Z≥0: The set of all non-negative integers.
• [1, k]Z: When k is a positive integer, [1, k]Z := {1, 2, . . . , k}. When k = +∞,
[1, k]Z := Z>0.

Function:

• f : X → Y : Indicates that the function f is a map that takes an element from
set X as input and outputs an element from set Y.

• y = f(x): Indicates that the output is y ∈ Y when x ∈ X is input to function f .

7/41

2. Preparation: Mathematical Notations

Vector:

• In this course, a vector refers to a column of numbers.
• Vectors are denoted by bold italic lowercase letters. Example: v.
• v ∈ Rn: Indicates that vector v is an n-dimensional real vector.
• The i-th element of vector v is denoted as vi.

v =


v1

v2
...
vn

 . (1)

• For two vectors u,v ∈ Rdemb , the standard inner product is defined as

⟨u,v⟩ :=
demb∑
i=1

uivi. (2)
8/41

2. Preparation: Mathematical Notations

Sequence:

• Given a set A, n ∈ Z>0 ∪ {+∞}, and a function a : [1, n]Z → A, a is called a
sequence of length n.

• Sequences are denoted by bold italic lowercase letters, similar to vectors.
This is because a finite sequence can be regarded as an extension of a real
vector.

• Let a be a sequence of length n. For i ∈ [1, n]Z, the i-th component ai is
defined as ai := a(i).

• When n < +∞, we write a = (a1, a2, ..., an). If a is an infinite sequence, we
write a = (a1, a2, ...).

• The length of a sequence a is written as |a|.

9/41

2. Preparation: Mathematical Notations

Matrix:

• Matrices are denoted by bold italic uppercase letters. Example: A.
• A ∈ Rm,n: Indicates that matrix A is an m× n real matrix.
• The element in the i-th row and j-th column of matrix A is denoted as ai,j .

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 . (3)

• The transpose of matrix A is denoted as A⊤.

A⊤ =


a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n

 . (4)

• A vector is also a matrix with 1 column, and its transpose is a row vector.

v⊤ =
[
v1 v2 · · · vn

]
∈ R1,n. (5)

10/41

2. Preparation: Mathematical Notations

Tensor:

• In this lecture, the word tensor simply refers to a multi-dimensional array.

• A vector can be seen as a first-order tensor, and a matrix as a second-order
tensor.

• Tensors of third order or higher are denoted by underlined bold italic
uppercase letters, like A.

11/41

2. Preparation: Mathematical Notations

Tensor:

• In this lecture, the word tensor simply refers to a multi-dimensional array.

• A vector can be seen as a first-order tensor, and a matrix as a second-order
tensor.

• Tensors of third order or higher are denoted by underlined bold italic
uppercase letters, like A.

11/41

2. Preparation: Mathematical Notations

Tensor:

• In this lecture, the word tensor simply refers to a multi-dimensional array.

• A vector can be seen as a first-order tensor, and a matrix as a second-order
tensor.

• Tensors of third order or higher are denoted by underlined bold italic
uppercase letters, like A.

11/41

Characteristics of Image
Generation as a Task

3. Characteristics of Image Generation as a Task

We organize the mathematical characteristics of image generation by comparing it
with natural language generation (auto-regressive models).

12/41

3.1 Aspects Where Image Generation is Easier

• Pre-determination of Output Dimensions: In image output applications,
(H,W,C) is often explicitly given by the user or can be fixed, so it is often
unnecessary to dynamically determine the output length based on the
input.

• Tolerance to Local Errors: Local errors pixel by pixel (e.g., a difference of
one intensity level) are often acceptable. There are usually no strong discrete
constraints on the adjacency of pixels.

• In contrast, in natural language, strong local constraints exist in token
sequences due to grammar, etc. (e.g., although "a" and "the" are individually
frequent, "the" almost never appears immediately after "a").

13/41

3.1 Aspects Where Image Generation is Easier

• Pre-determination of Output Dimensions: In image output applications,
(H,W,C) is often explicitly given by the user or can be fixed, so it is often
unnecessary to dynamically determine the output length based on the
input.

• Tolerance to Local Errors: Local errors pixel by pixel (e.g., a difference of
one intensity level) are often acceptable. There are usually no strong discrete
constraints on the adjacency of pixels.

• In contrast, in natural language, strong local constraints exist in token
sequences due to grammar, etc. (e.g., although "a" and "the" are individually
frequent, "the" almost never appears immediately after "a").

13/41

3.1 Aspects Where Image Generation is Easier

• Pre-determination of Output Dimensions: In image output applications,
(H,W,C) is often explicitly given by the user or can be fixed, so it is often
unnecessary to dynamically determine the output length based on the
input.

• Tolerance to Local Errors: Local errors pixel by pixel (e.g., a difference of
one intensity level) are often acceptable. There are usually no strong discrete
constraints on the adjacency of pixels.

• In contrast, in natural language, strong local constraints exist in token
sequences due to grammar, etc. (e.g., although "a" and "the" are individually
frequent, "the" almost never appears immediately after "a").

13/41

3.2 Aspects Where Image Generation is Harder

• Enormous Output Dimensionality: Even on a small scale, if
H = W = 256, C = 3, the dimensionality is 196,608. In contrast, many natural
language applications can be covered with an output of 10,000 tokens.

• Need for Information Supplementation due to Under-determination:
Particularly in text-to-image, the input (text) is at most a few dozen to a
hundred tokens, which is often much less information than the output.

14/41

3.2 Aspects Where Image Generation is Harder

• Enormous Output Dimensionality: Even on a small scale, if
H = W = 256, C = 3, the dimensionality is 196,608. In contrast, many natural
language applications can be covered with an output of 10,000 tokens.

• Need for Information Supplementation due to Under-determination:
Particularly in text-to-image, the input (text) is at most a few dozen to a
hundred tokens, which is often much less information than the output.

14/41

3.2 Aspects Where Image Generation is Harder

• For example, suppose the input prompt is the single word "dog". For image
generation, unless information not in the input prompt̶such as the dog’s
color, breed, size, and background̶ is supplemented, the output image
cannot be determined.

• More abstractly, even if the amount of input information is small, it is
necessary to generate a large amount of information... so when
supplementing that missing information, there is an arbitrariness to the
supplemented information.

• ... in the case of text-to-image, diverse solutions for the same condition are
natural, and diversity control by U becomes essential.

15/41

3.2 Aspects Where Image Generation is Harder

• For example, suppose the input prompt is the single word "dog". For image
generation, unless information not in the input prompt̶such as the dog’s
color, breed, size, and background̶ is supplemented, the output image
cannot be determined.

• More abstractly, even if the amount of input information is small, it is
necessary to generate a large amount of information... so when
supplementing that missing information, there is an arbitrariness to the
supplemented information.

• ... in the case of text-to-image, diverse solutions for the same condition are
natural, and diversity control by U becomes essential.

15/41

3.2 Aspects Where Image Generation is Harder

• For example, suppose the input prompt is the single word "dog". For image
generation, unless information not in the input prompt̶such as the dog’s
color, breed, size, and background̶ is supplemented, the output image
cannot be determined.

• More abstractly, even if the amount of input information is small, it is
necessary to generate a large amount of information... so when
supplementing that missing information, there is an arbitrariness to the
supplemented information.

• ... in the case of text-to-image, diverse solutions for the same condition are
natural, and diversity control by U becomes essential.

15/41

Why Probability Mass Function
(PMF)-based Methods are
Disadvantageous for Image
Generation

4.1 Review of NLG Formulation by Conditional PMF

In the standard formulation of natural language generation, a probabilistic
language model (conditional probability mass function) over the vocabulary V

P (yt | y<t,x), t = 1, 2, . . . (6)

is represented by a neural network, and a sequence is generated by sequential
sampling.

Output can be stopped by the appearance of EOS (end-of-sequence), allowing
the output length to be determined dynamically. Furthermore, elimination of
inconsistent tokens (utilization of local constraints) is possible.

16/41

4.1 Review of NLG Formulation by Conditional PMF

In the standard formulation of natural language generation, a probabilistic
language model (conditional probability mass function) over the vocabulary V

P (yt | y<t,x), t = 1, 2, . . . (6)

is represented by a neural network, and a sequence is generated by sequential
sampling.

Output can be stopped by the appearance of EOS (end-of-sequence), allowing
the output length to be determined dynamically. Furthermore, elimination of
inconsistent tokens (utilization of local constraints) is possible.

16/41

4.2 Difficulty of Application to Image Generation

Applying similar sequential sampling to image generation requires sampling HWC

dimensions one component at a time, leading to an enormous computational
cost.

Also, since images have weak local constraints, the advantages of Eq. (6) are
not well leveraged.

Furthermore, attempting to represent the joint distribution directly with a neural
network, rather than a conditional distribution, is impractical as the number of
elements in the product space is astronomical.

17/41

4.2 Difficulty of Application to Image Generation

Applying similar sequential sampling to image generation requires sampling HWC

dimensions one component at a time, leading to an enormous computational
cost.

Also, since images have weak local constraints, the advantages of Eq. (6) are
not well leveraged.

Furthermore, attempting to represent the joint distribution directly with a neural
network, rather than a conditional distribution, is impractical as the number of
elements in the product space is astronomical.

17/41

4.2 Difficulty of Application to Image Generation

Applying similar sequential sampling to image generation requires sampling HWC

dimensions one component at a time, leading to an enormous computational
cost.

Also, since images have weak local constraints, the advantages of Eq. (6) are
not well leveraged.

Furthermore, attempting to represent the joint distribution directly with a neural
network, rather than a conditional distribution, is impractical as the number of
elements in the product space is astronomical.

17/41

Practical Pipeline for text-to-image

5. Practical Pipeline for text-to-image

As we have seen so far, in text-to-image, the input prompt rarely contains enough
information to sufficiently narrow down the output candidates, so we want to
probabilistically assign diverse outputs to a single input. However, it is impractical
to assign probability mass to all possible output values, as is done in natural
language output.

On the other hand, images, as data, are not discrete, and the real-valued output
returned by the neural network is acceptable as is, so there is no necessity to
perform sampling on the output side.

Therefore, in practical text-to-image systems, random seed dependency is placed
on the input side from the neural network’s perspective. This is in contrast to
natural language generation, which places random seed dependency on the
output side from the neural network’s perspective.

18/41

5. Practical Pipeline for text-to-image

As we have seen so far, in text-to-image, the input prompt rarely contains enough
information to sufficiently narrow down the output candidates, so we want to
probabilistically assign diverse outputs to a single input. However, it is impractical
to assign probability mass to all possible output values, as is done in natural
language output.

On the other hand, images, as data, are not discrete, and the real-valued output
returned by the neural network is acceptable as is, so there is no necessity to
perform sampling on the output side.

Therefore, in practical text-to-image systems, random seed dependency is placed
on the input side from the neural network’s perspective. This is in contrast to
natural language generation, which places random seed dependency on the
output side from the neural network’s perspective.

18/41

5. Practical Pipeline for text-to-image

As we have seen so far, in text-to-image, the input prompt rarely contains enough
information to sufficiently narrow down the output candidates, so we want to
probabilistically assign diverse outputs to a single input. However, it is impractical
to assign probability mass to all possible output values, as is done in natural
language output.

On the other hand, images, as data, are not discrete, and the real-valued output
returned by the neural network is acceptable as is, so there is no necessity to
perform sampling on the output side.

Therefore, in practical text-to-image systems, random seed dependency is placed
on the input side from the neural network’s perspective. This is in contrast to
natural language generation, which places random seed dependency on the
output side from the neural network’s perspective.

18/41

5.1 Problem Formulation

In the following, a string is assumed to be an element of V∗, the set of finite
sequences over the token set V.

Let the input be one or more natural language strings
(
c(i)
)m
i=1

∈
(
V∗)m, and the

output be an image X (e.g., an H ×W × C real-valued tensor).

text-to-image is a task that aims to generate one of the images matching the
information contained in the string(s), given one or more strings and a random
seed as input, and is equivalent to learning some parametric function

Text2Imgθ :
(
V∗)m × U → I (7)

Here, U is the space of random seeds, and I ⊂ RH×W×C is the image space.

19/41

5.1 Problem Formulation

In the following, a string is assumed to be an element of V∗, the set of finite
sequences over the token set V.

Let the input be one or more natural language strings
(
c(i)
)m
i=1

∈
(
V∗)m, and the

output be an image X (e.g., an H ×W × C real-valued tensor).

text-to-image is a task that aims to generate one of the images matching the
information contained in the string(s), given one or more strings and a random
seed as input, and is equivalent to learning some parametric function

Text2Imgθ :
(
V∗)m × U → I (7)

Here, U is the space of random seeds, and I ⊂ RH×W×C is the image space.

19/41

5.1 Problem Formulation

In the following, a string is assumed to be an element of V∗, the set of finite
sequences over the token set V.

Let the input be one or more natural language strings
(
c(i)
)m
i=1

∈
(
V∗)m, and the

output be an image X (e.g., an H ×W × C real-valued tensor).

text-to-image is a task that aims to generate one of the images matching the
information contained in the string(s), given one or more strings and a random
seed as input, and is equivalent to learning some parametric function

Text2Imgθ :
(
V∗)m × U → I (7)

Here, U is the space of random seeds, and I ⊂ RH×W×C is the image space.

19/41

5.1 Problem Formulation

The output image X is represented by

X = Text2Imgθ

((
c(i)
)m
i=1

,u
)
. (8)

The ideal map Text2Imgθ is one that outputs different images corresponding to the
information in the input strings by changing the random seed.

20/41

5.1 Problem Formulation

The output image X is represented by

X = Text2Imgθ

((
c(i)
)m
i=1

,u
)
. (8)

The ideal map Text2Imgθ is one that outputs different images corresponding to the
information in the input strings by changing the random seed.

20/41

5.1 Problem Formulation

Remark

The goal of Eq. (7) is to obtain diverse realizations by scanning U , while having
a randomness-invariant core structure (a semantically consistent group of
images for the same condition).

21/41

5.2 General-Purpose Configuration in a Practical Pipeline

It is sufficient to construct a function that fits Eq. (7) and Eq. (8), without directly
obtaining the probability mass function of the output space.

In practical systems (e.g., Latent Diffusion Models [4]), the following three-layer
configuration is widely used.

1. Text encoder TextEnc(i)
α(i) : V∗ → Rd(i) . For multiple string inputs

(
c(i)
)m
i=1

, it
outputs embedding sequences

(
e(i)
)m
i=1

. Example: CLIP text encoder [3].

22/41

5.2 General-Purpose Configuration in a Practical Pipeline

It is sufficient to construct a function that fits Eq. (7) and Eq. (8), without directly
obtaining the probability mass function of the output space.

In practical systems (e.g., Latent Diffusion Models [4]), the following three-layer
configuration is widely used.

1. Text encoder TextEnc(i)
α(i) : V∗ → Rd(i) . For multiple string inputs

(
c(i)
)m
i=1

, it
outputs embedding sequences

(
e(i)
)m
i=1

. Example: CLIP text encoder [3].

22/41

5.2 General-Purpose Configuration in a Practical Pipeline

It is sufficient to construct a function that fits Eq. (7) and Eq. (8), without directly
obtaining the probability mass function of the output space.

In practical systems (e.g., Latent Diffusion Models [4]), the following three-layer
configuration is widely used.

1. Text encoder TextEnc(i)
α(i) : V∗ → Rd(i) . For multiple string inputs

(
c(i)
)m
i=1

, it
outputs embedding sequences

(
e(i)
)m
i=1

. Example: CLIP text encoder [3].

22/41

5.2 General-Purpose Configuration in a Practical Pipeline

The three-layer configuration (continued):

2. Low-resolution "image" generator (generator in latent space)
LatentGenβ :

(∏m
i=1Rd(i)

)
× U → Z. Here Z ⊂ Rh×w×c is the latent space.

A typical example is implementing the reverse diffusion process [1] of
diffusion models using a U-Net [5].

23/41

5.2 General-Purpose Configuration in a Practical Pipeline

The three-layer configuration (continued):

3. Decoder Decγ : Z → I. Example: The decoder of a Variational
Autoencoder (VAE) [2].

24/41

5.2 General-Purpose Configuration in a Practical Pipeline

As a whole,

Text2Imgθ

((
c(i)
)m
i=1

,u
)
:= Decγ

(
LatentGenβ

((
TextEnc(i)

α(i)(c
(i))
)m
i=1

,u
))

(9)

25/41

5.2 General-Purpose Configuration in a Practical Pipeline

When there are multiple condition inputs
(
c(i)
)m
i=1

,

Text2Imgθ

((
c(i)
)m
i=1

,u
)
:= Decγ

(
LatentGenβ

((
e(i)
)m
i=1

,u
))

, e(i) := TextEnc(i)
α(i)

(
c(i)
)
.

(10)

26/41

5.2 General-Purpose Configuration in a Practical Pipeline

TextEnc(i)
α(i) : V∗ → Rd(i)

LatentGenβ :

(
m∏
i=1

Rd(i)

)
× U → Z

Decγ : Z → I

(
e(i)
)m
i=1

z

(
c(i)
)m
i=1

u

X

Figure 1: Three-layer configuration of the text-to-image pipeline (top-to-bottom flow,
borderless light-colored blocks).

27/41

5.2 General-Purpose Configuration in a Practical Pipeline

Remark

TextEnc and Dec can be reused from existing models, making it easy to focus
learning on LatentGenθ. This improves data efficiency and development
efficiency.

28/41

5.3 Overview of Stable Diffusion 1.5

As a representative example, we overview Stable Diffusion v1.5 (academically,
one implementation of Latent Diffusion Models [4]).

• TextEnc: CLIP text encoder (Transformer-based) [3]. Conditioning is provided
to the U-Net [5] via cross-attention [4].

• LatentGenθ: Generates the latent Z by reverse diffusion, iteratively applying
noise prediction by a U-Net [5] [1,4].

• Dec: Reconstructs from latent to pixel space with a VAE decoder [2,4].

29/41

5.3 Overview of Stable Diffusion 1.5

As a representative example, we overview Stable Diffusion v1.5 (academically,
one implementation of Latent Diffusion Models [4]).

• TextEnc: CLIP text encoder (Transformer-based) [3]. Conditioning is provided
to the U-Net [5] via cross-attention [4].

• LatentGenθ: Generates the latent Z by reverse diffusion, iteratively applying
noise prediction by a U-Net [5] [1,4].

• Dec: Reconstructs from latent to pixel space with a VAE decoder [2,4].

29/41

5.3 Overview of Stable Diffusion 1.5

As a representative example, we overview Stable Diffusion v1.5 (academically,
one implementation of Latent Diffusion Models [4]).

• TextEnc: CLIP text encoder (Transformer-based) [3]. Conditioning is provided
to the U-Net [5] via cross-attention [4].

• LatentGenθ: Generates the latent Z by reverse diffusion, iteratively applying
noise prediction by a U-Net [5] [1,4].

• Dec: Reconstructs from latent to pixel space with a VAE decoder [2,4].

29/41

5.3 Overview of Stable Diffusion 1.5

As a representative example, we overview Stable Diffusion v1.5 (academically,
one implementation of Latent Diffusion Models [4]).

• TextEnc: CLIP text encoder (Transformer-based) [3]. Conditioning is provided
to the U-Net [5] via cross-attention [4].

• LatentGenθ: Generates the latent Z by reverse diffusion, iteratively applying
noise prediction by a U-Net [5] [1,4].

• Dec: Reconstructs from latent to pixel space with a VAE decoder [2,4].

29/41

5.4 Alignment of this Configuration with Task Characteristics

This three-part structure directly addresses the task characteristics we identified
earlier.

• Batch Update of Enormous Output: Computation is efficient because it
updates high dimensions all at once without sequential tokenization
(applying U-Net once per step).

• Handling Under-determination: Diversity control via U is built-in, and
diverse solutions from the same condition can be generated naturally.

30/41

5.4 Alignment of this Configuration with Task Characteristics

This three-part structure directly addresses the task characteristics we identified
earlier.

• Batch Update of Enormous Output: Computation is efficient because it
updates high dimensions all at once without sequential tokenization
(applying U-Net once per step).

• Handling Under-determination: Diversity control via U is built-in, and
diverse solutions from the same condition can be generated naturally.

30/41

5.4 Alignment of this Configuration with Task Characteristics

This three-part structure directly addresses the task characteristics we identified
earlier.

• Batch Update of Enormous Output: Computation is efficient because it
updates high dimensions all at once without sequential tokenization
(applying U-Net once per step).

• Handling Under-determination: Diversity control via U is built-in, and
diverse solutions from the same condition can be generated naturally.

30/41

5.4 Alignment of this Configuration with Task Characteristics

• Reduction of Computational Cost: Instead of outputting a high-dimensional
image, the process outputs a low-dimensional latent variable and then
converts it to a high-dimensional image with Dec, thereby reducing
computational cost.

31/41

5.4 Alignment of this Configuration with Task Characteristics

Remark (Difference between Research Paper and General Implementation
in Stable Diffusion 1.5)

Note the difference between the research paper and general
implementations. The original paper on Latent Diffusion Models [4] explicitly
states that the domain-specific encoder τθ (e.g., text encoder) for conditioning is
trained jointly with the reverse diffusion network ϵθ.

In fact, the paper states, ”both τθ and ϵθ are jointly optimized via Eq. 3.” and
”implement τθ as a transformer ... to infer a latent code” (Sec. 3.3 and Sec.
4.3.1).

32/41

5.4 Alignment of this Configuration with Task Characteristics

Remark (Difference between Research Paper and General Implementation
in Stable Diffusion 1.5)

Note the difference between the research paper and general
implementations. The original paper on Latent Diffusion Models [4] explicitly
states that the domain-specific encoder τθ (e.g., text encoder) for conditioning is
trained jointly with the reverse diffusion network ϵθ.

In fact, the paper states, ”both τθ and ϵθ are jointly optimized via Eq. 3.” and
”implement τθ as a transformer ... to infer a latent code” (Sec. 3.3 and Sec.
4.3.1).

32/41

5.4 Alignment of this Configuration with Task Characteristics

Remark (Continued)
On the other hand, the Stable Diffusion implementation in Hugging Face
Diffusers, which is widely used in practice, states, ”This model uses a frozen
CLIP ViT-L/14 text encoder to condition the model on text prompts.”1, and
uses the text encoder as frozen.

That is, there is an operational difference between the design principle of the
original paper (whether it is jointly trained) and the representative implementation
(using a fixed, existing encoder).

1
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

33/41

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

5.4 Alignment of this Configuration with Task Characteristics

Remark (Continued)
On the other hand, the Stable Diffusion implementation in Hugging Face
Diffusers, which is widely used in practice, states, ”This model uses a frozen
CLIP ViT-L/14 text encoder to condition the model on text prompts.”1, and
uses the text encoder as frozen.

That is, there is an operational difference between the design principle of the
original paper (whether it is jointly trained) and the representative implementation
(using a fixed, existing encoder).

1
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

33/41

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

5.5 Maintaining Consistency of Multiple Components in Latent Space

The latent space Z is the output space for the low-resolution ’image’ generator
LatentGenβ, ... and the input space for the decoder Decγ . The latent space
connects these two components.

Since neither component can be expected to learn a perfectly ideal function, each
component should have the following properties with respect to the latent space
so that it can accommodate the other’s deviations.

34/41

5.5 Maintaining Consistency of Multiple Components in Latent Space

The latent space Z is the output space for the low-resolution ’image’ generator
LatentGenβ, ... and the input space for the decoder Decγ . The latent space
connects these two components.

Since neither component can be expected to learn a perfectly ideal function, each
component should have the following properties with respect to the latent space
so that it can accommodate the other’s deviations.

34/41

5.5 Maintaining Consistency of Multiple Components in Latent Space

• As the output space of the text encoder: When two sentences with similar
content to be reflected in the image are input, their respective outputs are
close to each other.

• As the input space of the decoder: When two inputs that are close to each
other are given, their respective outputs are close to each other.

35/41

5.5 Maintaining Consistency of Multiple Components in Latent Space

• As the output space of the text encoder: When two sentences with similar
content to be reflected in the image are input, their respective outputs are
close to each other.

• As the input space of the decoder: When two inputs that are close to each
other are given, their respective outputs are close to each other.

35/41

5.5 Maintaining Consistency of Multiple Components in Latent Space

Satisfying these allows the low-resolution ’image’ generator to obtain an output
close to the ideal, even if its output is not perfectly ideal. This leads to ease of
learning and stability in inference.

36/41

Summary and Future Plans

6.1 Summary Corresponding to Learning Outcomes

• Task Characteristics: Image generation has enormous output
dimensions, weak local constraints, and is under-determined.

• Pipeline Configuration: Practical text-to-image consists of a text encoder
TextEnc, a latent generator LatentGenθ (reverse diffusion + U-Net), and a
decoder Dec (VAE).

• Reason for Configuration: It aligns with the task characteristics because
it updates high dimensions collectively and continuously, controlling diversity
with randomness while maintaining semantic consistency.

37/41

6.1 Summary Corresponding to Learning Outcomes

• Task Characteristics: Image generation has enormous output
dimensions, weak local constraints, and is under-determined.

• Pipeline Configuration: Practical text-to-image consists of a text encoder
TextEnc, a latent generator LatentGenθ (reverse diffusion + U-Net), and a
decoder Dec (VAE).

• Reason for Configuration: It aligns with the task characteristics because
it updates high dimensions collectively and continuously, controlling diversity
with randomness while maintaining semantic consistency.

37/41

6.1 Summary Corresponding to Learning Outcomes

• Task Characteristics: Image generation has enormous output
dimensions, weak local constraints, and is under-determined.

• Pipeline Configuration: Practical text-to-image consists of a text encoder
TextEnc, a latent generator LatentGenθ (reverse diffusion + U-Net), and a
decoder Dec (VAE).

• Reason for Configuration: It aligns with the task characteristics because
it updates high dimensions collectively and continuously, controlling diversity
with randomness while maintaining semantic consistency.

37/41

6.2 Next Lecture Preview

In the next and subsequent lectures, we will detail each component. Naturally,
each component must be consistent with the others.

First, we will explain the VAE (encoder/decoder, latent regularization, inference,
and learning), which connects the image space and the latent space at the
outermost layer.

38/41

6.2 Next Lecture Preview

In the next and subsequent lectures, we will detail each component. Naturally,
each component must be consistent with the others.

First, we will explain the VAE (encoder/decoder, latent regularization, inference,
and learning), which connects the image space and the latent space at the
outermost layer.

38/41

References i

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[2] Diederik P. Kingma and Max Welling.
Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

39/41

References ii

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamila Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision.
In Proceedings of the 38th International Conference on Machine Learning
(ICML), 2021.

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer.
High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022.

40/41

References iii

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
pages 234–241, 2015.

41/41

