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Take home message

If your data have a hierarchical or tree-like structure, hyperbolic space 
might help you.
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We anticipate that, at the end of this lecture, 
you will be able to
• Explain hyperbolic space’s exponential space growth property,

• Judge whether hyperbolic space can contribute to applications that 
you are interested in, and

• Have clues to design a machine-learning model using hyperbolic 
space.
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Outline

• Representation learning’s motivation

• Why non-Euclidean, hyperbolic?

• How does hyperbolic space look like?

• Representation learning models using hyperbolic space
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Embedding maps entities 
into points in metric space 
• Entities can be anything: e.g., people, cars, words, colours, etc.

• Computers need mathematical representations to handle entities.

• Embedding: obtaining representations of entities in a metric space
• Notation: 𝑧 𝑖 is the representation of entity 𝑖. 
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(e.g., neural networks)
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Embedding maps entities 
into points in metric space 
• Entities can be anything: e.g., people, cars, words, colours, etc.

• Computers need mathematical representations to handle entities.

• Representations 𝑧(1), 𝑧(2), … are usually in metric space
• so we can measure the distance between entities
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Notation

• left ≔ (right) means we define left by right .

• Examples: i ≔ −1, 𝜙 ≔
1+ 5

2
.

• “iff” means “if and only if”

• ln⋅ is the natural logarithm.
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Notation

• ℤ: the set of integers. ℤ = {0, ±1,±2,… }.

• ℤ>0: the set of positive integers. ℤ = {1,2, … }.

• ℝ: the set of real numbers.

• Examples: 0, 2, 𝜋, 𝜙,−
22

7
∈ ℝ, but i ∉ ℝ.

• ℝ≥0: the set of nonnegative real numbers.

• Examples: 0, 𝜋, 𝜙 ∈ ℝ≥0, but −
22

7
, i ∉ ℝ≥0.

• ℝ>0: the set of positive real numbers.

• Examples: 𝜋, 𝜙 ∈ ℝ>0, but 0,−
22

7
, i ∉ ℝ>0
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Notation (vectors)

• ℝ𝐷: the set of 𝐷-dimensional real vectors (for 𝐷 ∈ ℤ>0).

• Examples, 
2
−1

∈ ℝ2,
2
−1
3

∈ ℝ3.

• Note: we denote most vectors as column vectors with square brackets. 

• A real vector is denoted by a bold lower letter, e.g., 𝒙, 𝒚, 𝒛.

• The transpose of a vector is denoted by ⊤. 

• E.g., if 𝒙 =
2
−1
3

, then 𝒙⊤ = 2 −1 3 .
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Notation (maps, functions)

Let 𝐴 and 𝐵 be sets.

• 𝑓: 𝐴 → 𝐵 means that 𝑓 is a map from the set 𝐴 to the set 𝐵. 
• That is, 𝑓(𝑎) is defined iff 𝑎 ∈ 𝐴 and 𝑓 𝑎 ∈ 𝐵.

• Examples: exp: ℝ → ℝ>0, ⋅
2: ℝ → ℝ≥0.

• If 𝐵 is a subset of ℝ, the map 𝑓 is called a (real-valued) function on 𝐴.

• 𝐴 × 𝐵 is the direct product of 𝐴 and 𝐵, the set of pairs of an element 
in 𝐴 and an element in 𝐵.
• That is, 𝐴 × 𝐵 = (𝑎, 𝑏) 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 .

• Hence, 𝑓: 𝐴 × 𝐵 → ℝ means that 𝑓 is a real-valued bivariate function 
that takes an element in 𝐴 and an element in 𝐵 as inputs.
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Metric space ( ) is a point set 𝒵
equipped with a distance function Δ
A metric space is denoted by the pair (𝒵, Δ), where

• 𝒵 is a point set, and

• Δ:𝒵 × 𝒵 → ℝ≥0 is a distance function on 𝒵.

For 𝑧, 𝑧′ ∈ 𝒵, the value Δ(𝑧, 𝑧′) is called the distance between 𝑧 and 𝑧′.

In metric space, we can discuss whether two points are close or distant.

Example: the 2-dimensional Euclidean space ℝ2, Δℝ2,Euc , where 
• ℝ2: the set of 2-dimensional real vectors.
• Δℝ2,Euc: ℝ

2 × ℝ2 → ℝ≥0: the distance function defined by

Δℝ2,Euc
𝑥
𝑦 ,

𝑥′
𝑦′

≔ 𝑥′ − 𝑥 2 + 𝑦′ − 𝑦 2.
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The distance function allows us to discuss 
two representations’ relation quantitatively
A metric space (𝒵, Δ) has a distance function Δ:𝒵 × 𝒵 → ℝ≥0.

The distance function defines the distance between two points.

In the representation learning context,

• A small value of Δ(𝑧(𝑖), 𝑧(𝑗)) implies that 𝑖 and 𝑗 are strongly related.

• A large value of Δ(𝑧(𝑖), 𝑧(𝑗)) implies that 𝑖 and 𝑗 are weakly related.

The distance function is essential to discuss the relation between 
entities quantitatively.

Without the distance function, we could only discuss whether two entities are 
the same or not.

Atsushi Suzuki 13



We can consider multiple distance functions
on one point set.

Example: the Taxicab (Manhattan) geometry ℝ2, Δℝ2,Man , where 
• ℝ2: the set of 2-dimensional real vectors.

• Δℝ2,Man: ℝ
2 × ℝ2 → ℝ≥0: the distance function defined by

Δℝ2,Man

𝑥
𝑦 ,

𝑥′
𝑦′

≔ 𝑥′ − 𝑥 + 𝑦′ − 𝑦 .
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The axiomata ( ) of a distance function

Strictly speaking, we call (𝒵, Δ) a metric space iff for all 𝑧, 𝑧′, 𝑧′′,
• Δ 𝑧, 𝑧′ = 0 ⇔ 𝑧 = 𝑧′ (identity of indiscernibles ),

• Δ 𝑧, 𝑧′ ≥ 0 (nonnegativity ),

• Δ 𝑧, 𝑧′ = Δ 𝑧′, 𝑧 (symmetricity ),

• Δ 𝑧, 𝑧′ + Δ 𝑧′, 𝑧′′ ≥ Δ 𝑧, 𝑧′′ (triangle inequality ).

Example of distance functions that satisfy the above:
• The Euclidean distance and ℓ𝑝-distance on real vector space

• The (geodesic) distance on a sphere

• The Hellinger distance between distributions

• The Wasserstein distance between distributions on a metric space
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In the representation learning context, 
the axiomata are not always satisfied.
Example of distance functions that do NOT satisfy the axiomata:

• Squared Euclidean distance 𝒛′ − 𝒛 2
2 (violates the triangle inequality)

• Negative inner product −𝒛⊤𝒛′(satisfies the symmetry only)
• Kullback-Leibler divergence between distributions 
𝔼𝑃 log 𝑃(𝑋) − 𝔼𝑃 log 𝑃′(𝑋) (satisfies the nonnegativity only)

In the representation learning context, the axiomata are not important.

Essential is whether the following interpretation holds:

• A small distance ⇒ similar, related, close 

• A large distance ⇒ dissimilar, irrelated, far
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The objective of representation learning

Representation learning (embedding) on (𝒵, Δ) aims to get 
representations 𝑧(1), 𝑧(2), … , 𝑧 𝑁 ∈ 𝒵 that satisfy

• 𝑖 and 𝑗 are closely related ⇔Δ𝒵 𝑧(𝑖), 𝑧(𝑗) is small,

• 𝑖 and 𝑗 are NOT closely related ⇔Δ𝒵 𝑧(𝑖), 𝑧(𝑗) is large.
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Application of embedding 1: visualisation [Nickel & Kiela, 

NeurIPS, 2017]

For visualisation, the 
representation space’s dimension 
should be 
2 or 3.
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Figure is from [Nickel & Kiela, NeurIPS, 2017]



Application of embedding 2: 
recommendation (finding unknown links)
We can recommend them to one 
another if their representations 
are located close.

For recommendation, 
representations in a low-
dimensional space is preferrable 
to save computational cost.
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Outline

• Representation learning’s motivation
• To obtain entities’ representations that reflect the relation among them.

• Why non-Euclidean, hyperbolic?

• How does hyperbolic space look like?

• Representation learning models using hyperbolic space

Atsushi Suzuki 20



Outline

• Representation learning’s motivation

• Why non-Euclidean, hyperbolic?

• How does hyperbolic space look like?

• Representation learning models using hyperbolic space

Atsushi Suzuki 21



Euclidean space is NOT suitable for handling 
hierarchical data.
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Hierarchical data 
(e.g., hypernym-hyponym relation in natural language words)

Bad representations 
(e.g., word embedding in (ℝ2, Δℝ2,Euc))
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Why Euclidean and hierarchy not compatible?
- Polynomial growth speed of space
• # entities in hierarchical data: exponentially grows w.r.t. layer depth.

• (surface area) ∝ 𝑟𝐷−1 (polynomial w.r.t. radius 𝑟) 
in Euclidean space ℝ𝐷, Δℝ𝐷,Euc

⋯

⋮

Radius Circ. 𝐶 Layer dep. # entities

0 0 0 1

1 2𝜋 1 2

2 4𝜋 2 4

⋮ ⋮ ⋮ ⋮

𝑟 2𝜋𝑟 𝐻 2𝐻

exponentialpolynomial incompatible
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Hierarchical data 
(e.g., complete binary tree)



Where do we find a different growth speed?
Answer: in non-Euclidean space

𝑟 =
1

6
𝜋

𝐶 = 2𝜋 sin
1

6
𝜋 = 𝜋

𝑟 = 1

𝐶 = 2𝜋 ⋅ 1 = 2𝜋

2-dim. Euclidean space: 𝐶 = 2𝜋𝑟 2-dim. sphere: 𝐶 = 2𝜋 sin 𝑟

In what space 𝐶 = 𝑂(exp 𝑟)? – Hyperbolic space ( ).
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Advantage of hyperbolic space

• # entities in hierarchical data: exponentially grows w.r.t. layer depth.

• (surface area) ∝ (sinh 𝑟)𝐷−1 (exponential w.r.t. radius 𝑟) 
in hyperbolic space

⋯

⋮

Radius Circ. 𝐶 Layer dep. # entities

0 0 0 1

1 2𝜋 sinh 1 1 2

2 2𝜋 sinh 2 2 4

⋮ ⋮ ⋮ ⋮

𝑟 2𝜋 sinh 𝑟 𝐻 2𝐻

exponentialsinh 𝑟 = 𝑂(exp 𝑟) exponential compatible

Atsushi Suzuki 25We can embed any tree in 2-dim’l hyperbolic space [Sarker+ 2011]

Attracting much attention in ML 
from 2017 [Nickel & Kiela, 2017]

Hierarchical data 
(e.g., complete binary tree)



Outline

• Representation learning’s motivation

• Why non-Euclidean, hyperbolic?
• Hyperbolic space’s exponential space growth speed matches data with a 

hierarchical structure.

• How does hyperbolic space look like?

• Representation learning models using hyperbolic space
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What is hyperbolic space?

𝐷-dimensional hyperbolic space 𝔻𝐷, Δ𝔻𝐷,hyp 𝒙, 𝒚

• 𝔻𝐷 = 𝒙 ∈ ℝ𝐷 𝒙 2 < 1 (the unit open ball)

• Where 𝒙 2 = 𝒙⊤𝒙.

• Distance function:

Δ𝔻𝐷,hyp 𝒙, 𝒚 = cosh−1 1 +
2 𝒙−𝒚 2

2

1− 𝒙 2
2 1− 𝒚 2

2 .

• Where cosh 𝑥 ≔
𝑒𝑥+𝑒−𝑥

2
, hyperbolic cosine function

and its inverse cosh−1 𝑥 ≔ ln 𝑥 + 𝑥2 − 1

• The above realization of hyperbolic space
is called the Poincaré disk model.
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Exercise on the distance function 
of 2-dimensional hyperbolic space.

Δ𝔻𝐷,hyp 𝒙, 𝒚 = cosh−1 1 +
2 𝒙−𝒚 2

2

1− 𝒙 2
2 1− 𝒚 2

2

≈ ln
2 𝒙−𝒚 2

2

1− 𝒙 2
2 1− 𝒚 2

2 .

Exercise: consider the distance between
0
𝑐

and 
0

𝑐 − 0.01
as 𝑐 1.

That is, we consider 

Δ𝔻𝐷,hyp
0
0
,

0
−0.01

, Δ𝔻𝐷,hyp
0
0.9

,
0

0.89
,

Δ𝔻𝐷,hyp
0

0.99
,

0
0.98

, Δ𝔻𝐷,hyp
0

0.999
,

0
0.989

,…
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Example answer: the space is 
infinitely large around the disk boundary

Consider Δ𝔻𝐷,hyp
0
𝑐
,

0
𝑐 − 0.01

.

Δ𝔻𝐷,hyp 𝒙, 𝒚 ≈ ln
2 𝒙−𝒚 2

2

1− 𝒙 2
2 1− 𝒚 2

2

→ +∞ as 𝑐 1.
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All the blue circles are of radius 1

Denominator → 0
as 𝒙 2

2, 𝒚 2
2 → 1

Around the disk boundary,
even a small coordinate difference 
may lead to a large distance

As a result, 𝐶 = 𝑂(exp 𝑟)

2-dim’l hyperbolic space

2-dim’l Euclidean space

Numerator is always 2 ⋅ 0.012



Visualization
https://en.wikipedia.org/wiki/File:Hyperbolic_domains_
642.png (public domain)

All the triangles have the 
same shape and size
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Why is it called hyperbolic space ( )?

We can realize the 2-dimensional 
hyperbolic space as a hyperboloid (

) 𝑥2 + 𝑦2 − 𝑧2 = −1, 𝑧 > 0
in the 3-dimensional Minkowski
space.
The above realization is called the 
hyperboloid model of hyperbolic 
space.

• Minkowski space: the space where 
the distance function is given by 

𝑥′ − 𝑥 2 + 𝑦′ − 𝑦 2 − 𝑧′ − 𝑧 2
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https://commons.wikimedia.org/wiki/File:HyperboloidProjection.png (CC0)

Poincare disk model

hyperboloid model

https://commons.wikimedia.org/wiki/File:HyperboloidProjection.png


Outline

• Representation learning’s motivation

• Why non-Euclidean, hyperbolic?

• How does hyperbolic space look like?
• The space around the disk boundary is much larger than it looks

(in the Poincare disk model)

• Representation learning models using hyperbolic space
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Outline
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• How does hyperbolic space look like?

• Representation learning models using hyperbolic space
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Method design scheme

Basic ideas: designing a loss function that is:

• Increasing w.r.t. the distance between the representations of two 
entities strongly related to each other.

• Decreasing w.r.t. to the distance between the representations of two 
entities weakly related to each other.
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Strongly related and close: small loss Strongly related and distant: large loss

Weakly related and close: large loss Weakly related and distant: small loss

Increasing w.r.t. distance

Decreasing w.r.t. distance



Method design scheme

We can get good representations by minimizing the loss function. If we 
succeed in minimizing it, the resulting representations are expected to 
satisfy

• Short distance between the representations of a strongly related pair.

• Long distance between the representations of a weakly related pair.

Atsushi Suzuki 36

Optimization

Random embedding example Optimized embedding example



Example 1: positive/negative edges 
and graph embedding
• Positive/negative edges:

• Positive edges: pairs of entities strongly related

• Negative edges: pairs of entities weakly related 

• Example hyperbolic model: Poincaré embedding [Nickel & Kiela, NeurIPS, 2017] where: 
• positive edges are generated by sampling edges in the graph, 

• negative edges are generated by randomly sampling a vertex pair from all the 
vertex pairs. 
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Loss function of Poincaré embedding [Nickel 
& Kiela, NeurIPS, 2017]
Input: a graph 𝒢 = 𝒱, ℰ , where 𝒱 is the vertex set and ℰ ⊂ 𝒱 × 𝒱.

The (stochastic) loss function is given by

σ 𝑖,𝑗 ∈ℰ −Δ 𝑧𝑖 , 𝑧𝑗 + logσ𝑘=1
𝑛 expΔ 𝑧𝑖 , 𝑧𝑣−(𝑖) ,

• Where 𝑣− 𝑖 is a random variable uniformly distributed on the negative tails 
from 𝑖 defined by 𝒩− 𝑖 = 𝑗 𝑖, 𝑗 ≠ ℰ .
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Loss function of Poincaré embedding [Nickel 
& Kiela, NeurIPS, 2017]
Input: a graph 𝒢 = 𝒱, ℰ , where 𝒱 is the vertex set and ℰ ⊂ 𝒱 × 𝒱.

The (stochastic) loss function is given by

σ 𝑖,𝑗 ∈ℰ −Δ 𝑧𝑖 , 𝑧𝑗 + logσ𝑘=1
𝑛 expΔ 𝑧𝑖 , 𝑧𝑣−(𝑖) ,

• Where 𝑣− 𝑖 is a random variable uniformly distributed on the negative tails 
from 𝑖 defined by 𝒩− 𝑖 = 𝑗 𝑖, 𝑗 ≠ ℰ .

• Example: if 𝑖, 𝑗 = , , then 𝑣−

is uniformly distributed on... 
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Loss function of Poincaré embedding [Nickel 
& Kiela, NeurIPS, 2017]
Input: a graph 𝒢 = 𝒱, ℰ , where 𝒱 is the vertex set and ℰ ⊂ 𝒱 × 𝒱.

The (stochastic) loss function is given by

σ 𝑖,𝑗 ∈ℰ −Δ 𝑧𝑖 , 𝑧𝑗 + logσ𝑘=1
𝑛 expΔ 𝑧𝑖 , 𝑧𝑣−(𝑖) ,

• Where 𝑣− 𝑖 is a random variable uniformly distributed on the negative tails 
from 𝑖 defined by 𝒩− 𝑖 = 𝑗 𝑖, 𝑗 ≠ ℰ .

• Example: if 𝑖, 𝑗 = , , then 𝑣−

is uniformly distributed on... 

The loss is 
• decreasing w.r.t. distance btw positive edge reprs,

• increasing w.r.t. distance btw negative edge reprs.
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Two types of data input

Ordinal data

• A triplet (𝑖𝑠, 𝑗𝑠, 𝑘𝑠)
with a negative label 𝑦𝑠 = −1:
𝑗𝑠 is more closely related to 𝑖𝑠
than 𝑘𝑠.

• A triplet 𝑖𝑠, 𝑗𝑠, 𝑘𝑠
with a positive label 𝑦𝑠 = +1:
𝑘𝑠 is more closely related to 𝑖𝑠
than 𝑗𝑠.

• Application: crowdsourcing
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Positive/negative edges

• Positive edges:
pairs of entities closely related

• Negative edges:
pairs of entities not related

Application: graph embedding



Example 2: ordinal data

Ordinal data consist of pairs of 
• An entity triplet (𝑖, 𝑗, 𝑘) and 
• A label 𝑦 ∈ {±1} (human annotation friendly). 

• A negative label 𝑦 = −1 indicates 
that 𝑗 is more strongly related to 𝑖 than 𝑘.

• A positive label 𝑦 = +1 indicates 
that 𝑘 is more strongly related to 𝑖 than 𝑗.

• Example hyperbolic model: Hyperbolic ordinal embedding [Suzuki+, ACML, 2019]
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Hyperbolic ordinal embedding’s
loss function (the simplest version)

Input 𝑖1, 𝑗1, 𝑘1 , 𝑦1 , 𝑖2, 𝑗2, 𝑘2 , 𝑦2 , … , 𝑖𝑆, 𝑗𝑆, 𝑘𝑆 , 𝑦𝑆 .

The loss function is given by



𝑠=1

𝑆

𝑦𝑠 Δ 𝑥𝑖𝑠 , 𝑥𝑘𝑠 − Δ 𝑥𝑖𝑠 , 𝑥𝑗𝑠 + 𝛿
+

.

The loss is 
• decreasing w.r.t. distance btw representation pair more strongly related,

• increasing w.r.t. distance btw representation pair more weakly related.
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Outline

• Representation learning’s motivation

• Why non-Euclidean, hyperbolic?

• How does hyperbolic space look like?

• Representation learning models using hyperbolic space
• The loss function should be

• Increasing w.r.t. the distance btw the reprs of two entities strongly related to each other.

• Decreasing w.r.t. the distance btw the reprs of two entities weakly related to each other.
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Summary

• Representation learning’s motivation
• To obtain entities’ representations that reflect the relation among them.

• Why non-Euclidean, hyperbolic?
• Hyperbolic space’s exponential space growth speed matches data with a hierarchical 

structure.

• How does hyperbolic space look like?
• The space around the disk boundary is much larger than it looks

(in the Poincare disk model)

• Representation learning models using hyperbolic space
• The loss function should be

• Increasing w.r.t. the distance btw the reprs of two entities strongly related to each other.
• Decreasing w.r.t. the distance btw the reprs of two entities weakly related to each other.
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Take home message

If your data have a hierarchical or tree-like structure, hyperbolic space 
might help you.

Please join the anonymous feedback opportunity:

https://docs.google.com/forms/d/e/1FAIpQLSdfaP8RAaf96UjE96jyzpPP
GLT_RIs8O0GuP0DDy-QWxZUcCQ/viewform?usp=sf_link
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