
Probability Theory

SUZUKI, Atsushi



The whole contents

1 Random variables

2 Multiple Random Variables

3 Continuous Random Variables

4 Sample Statistics

5 Statistical Test

© SUZUKI, Atsushi 2



Outline

1 Random variables

Introduction: why do we learn random variables?
Univariate discrete random variable
Visualization of a distribution
Summary statistics for a univariate random variable
Expectation
Median
Variance and a function of a random variable
Exercises

© SUZUKI, Atsushi 3



Outline

1 Random variables

Introduction: why do we learn random variables?

© SUZUKI, Atsushi 4



Probability theory handles random events

Probability theory handles random events, where the probability Pr(A) ∈ [0,1] is defined
for each event A. Here, an event is a subset of the sample space, the set of all the
possible outcomes. Each element in the sample space is called an elementary event .

Example (Weather forecast)

Consider a weather forecast of 24 hours later. The sample space
S= {(It will be) sunny, cloudy, rainy, snowy}. Suppose that the probability for each elementary
event is given by

Event A {sunny} {cloudy} {rainy} {sunny}

The probability Pr(A) 0.4 0.2 0.3 0.1

If an event A includes multiple elements in the sample space S, the probability Pr(A) is given by
the sum of the probabilities of those elements. For example,
Pr({sunny, rainy})=Pr({sunny})+Pr({rainy})= 0.4+0.3= 0.7.
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Probability theory handles random events

Probability theory handles random events, where the probability Pr(A) ∈ [0,1] is defined
for each event A. Here, an event is a subset of the sample space, the set of all the
possible outcomes. Each element in the sample space is called an elementary event .

Example (Weather forecast)

Consider a weather forecast of 24 hours later. The sample space
S= {(It will be) sunny, cloudy, rainy, snowy}. Suppose that the probability for each elementary
event is given by

Event A {sunny} {cloudy} {rainy} {sunny}

The probability Pr(A) 0.4 0.2 0.3 0.1

In the above example, each event is a set of real phenomena, which we do not regard as
a numeric value directly. However, in the following, we always assume that each event
is a set of numeric values.© SUZUKI, Atsushi 5



Random variable

When each elementary event is associated with a real value, then the set of those
random events is called a random variable (RV).

Example (RVs in real life)

• A stock price in finance

• The remainder of one’s life in medicine

• The intensity of the acoustic signal in speech recognition

But WHY do we limit the discussion to RVs only, instead of considering general random
events? The reasons are the following:

• RVs, i.e., numeric random events, are all the random events we need to handle in
computer science, including AI, since a computer can only handle numeric values.

• If random events are RVs, i.e., numeric, we can discuss their random behaviors
quantitatively based on the RVs’ numeric values.

© SUZUKI, Atsushi 6



Random variable

When each elementary event is associated with a real value, then the set of those
random events is called a random variable (RV).

Example (RVs in real life)

• A stock price in finance

• The remainder of one’s life in medicine

• The intensity of the acoustic signal in speech recognition

But WHY do we limit the discussion to RVs only, instead of considering general random
events? The reasons are the following:

• RVs, i.e., numeric random events, are all the random events we need to handle in
computer science, including AI, since a computer can only handle numeric values.

• If random events are RVs, i.e., numeric, we can discuss their random behaviors
quantitatively based on the RVs’ numeric values.© SUZUKI, Atsushi 6



Learning outcomes

By the end of this section, you should be able to:

• Explain the difference between random events and random variables,

• Represent the probability distribution of a random variable using the probability
mass function and cumulative distribution function, and

• Describe a probability distribution using summary statistics.
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Discrete random variable: motivation

In general, a random variable may take all the real values.

Still, when considering applications in computer science, including artificial intelligence,
we do not need to handle all the real values. Specifically, we can assume that a random
variable always takes a value in a finite subset of R (the set of real numbers).

This is because a computer can handle a finite number of real numbers. For example, a
computer usually uses 64 bits to represent a real value. In this case, the computer can
represent only 264 ≈ 1.84×1019 real numbers.

Hence, it is good to begin with such finite cases1.

1Nevertheless, we need to learn more general cases later even if we are interested in finite value cases only.
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Discrete random variables

Definition

A random variable taking a value randomly in a discrete subset 2 of R (the set of real numbers) is
called a discrete random variable.
The subset of R in which a discrete random variable X takes a value is called the support or
target space of X.

Example (Rolling an ideal six-sided dice)

Let X be the number that lands face-up when we roll an ideal six-sided dice.
The support of X is {1,2,3,4,5,6}. The probability of each event is given by:

x 1 2 3 4 5 6

Pr(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

Table: Rolling an ideal six-sided dice

2Strictly speaking, “discrete” stands for “at most countable.” Here, we say a set is at most countable if and only if there exists a surjective map from the set of
integers to the set.
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Probability mass function (PMF)

When we consider a univariate discrete random variable taking a value in a discrete set
X = {x1,x2, . . . }⊂R, we can completely understand the behaviour of X by knowing the
probability of X taking a value x, where x ∈X . Hence, we define a function describing
those probabilities.

Definition (probability mass function (PMF))

Let X be a discrete random variable taking a value in a discrete set X ⊂R. We define the
probability mass function (PMF) PX : X → [0,1] of the random variable X by

PX (x)BPr(X = x). (1)

The relation between the value that a RV takes and its probability is called the
distribution of the RV. The PMF is the most fundamental way to represent the
distribution of a discrete RV.
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Properties of a PMF

A PMF must satisfy the following:

• (Nonnegativity) PX (x)≥ 0 for all x ∈X .

• (The sum)
∑

x∈X PX (x)= 1.

© SUZUKI, Atsushi 12



PMF tells us all we want to know.

If we want to know, for example, Pr(a≤X ≤ b), we can find it by the PMF:

Pr(a≤X ≤ b)=
∑

a≤x≤b
PX (x). (2)

Example (Rolling an ideal six-sided dice)

Let X be the number that lands face-up when we roll an ideal six-sided dice.
The support of X is {1,2,3,4,5,6}. The PMF of each event is given by:

x 1 2 3 4 5 6

PX (x)BPr(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

Table: Rolling an ideal six-sided dice

Here, Pr(2≤ x≤ 4) is given by
∑

2≤x≤4 PX (x)=PX (2)+PX (3)+PX (4)= 1
6 + 1

6 + 1
6 = 1

2 .
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A frequency is a discrete random variable

The probability theory can handle data points by considering its frequency . This is the
first step of data science.

Suppose that we have m data points taking values in R. For the probability theory to
handle the data points, we need to construct a random variable.

Specifically, we sample a data point uniform-randomly. Then, the value of the sampled
data point is a discrete random variable.

The probability distribution of the random variable constructed from the data points this
way is called the frequency or empirical distribution.
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Example of frequency

Example (Exam results)

Suppose that we have m= 20 students and consider their results in an exam. For
x ∈X = {0,1,2,3,4,5}, we denote the number of the students who got a score x by mx.
Let X be the score of the student sampled uniform-randomly from the 20 students.
The probability Pr(X = x) equals to mx

m . For example,

Score x 0 1 2 3 4 5

# students mx 3 2 3 5 6 1
PX (x)BPr(X = x)= mx

m 0.15 0.10 0.15 0.25 0.30 0.05

Table: Exam result data points and the frequency.
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How to visualize a distribution?

If a distribution is complicated, then you might want to understand it from a figure, not
from a long table.

One way is to draw a graph of the PMF.
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Example of a PMF graph: rolling an ideal dice

Suppose that we roll an ideal six-sided dice. The PMF is given as follows.

x 1 2 3 4 5 6

PX (x)BPr(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

Table: The PMF of rolling an ideal six-sided dice

x

y

O

y=PX (x)1
6

1 2 3 4 5 6
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Example of a PMF graph: rolling an ideal dice

Suppose that we roll an ideal six-sided dice. The PMF is given as follows.

Score x 0 1 2 3 4 5

PX (x)BPr(X = x) 0.15 0.10 0.15 0.25 0.30 0.05

Table: The PMF of the frequency of exam results

x

y

O

y=PX (x)

1 2 3 4 5
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Pros and cons of the PMF graph

x

y

O

y=PX (x)

1 2 3 4 5

Pros: From the PMF graph, we can easily see which value the RV takes more and less
frequently.

Cons: A PMF is not suitable to calculate the probability of a RV taking a value in a certain
range, e.g., Pr(1.5≤X ≤ 3.8).
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Cumulative distribution function (CDF)

Any random variable has a cumulative distribution function (CDF) defined as follows.

Definition

Let X be a random variable. The cumulative distribution function (CDF) FX :R→ [0,1] of X is
defined by

FX (x)BPr(X ≤ x). (3)
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The CDF gives formulae to evaluate a section’s probability

In the following, let a,b ∈R and a< b.

We have that Pr(X < a)= limx↗a FX (x), where the right hand side is the left limit of FX at
a, given by evaluating FX (x−ϵ) while diminishing ϵ to a positive value infinitely close to
zero.

Using the above fact, we can calculate the probability of a random variable taking a value
in a section using the CDF as follows.

Theorem

• Pr(a≤X ≤ b)=Pr(X ≤ b)−Pr(X < a)=FX (b)− limx↗a FX (x).

• Pr(a<X < b)=Pr(X < b)−Pr(X ≤ a)= limx↗b FX (x)−FX (a).

• Pr(a<X ≤ b)=Pr(X ≤ b)−Pr(X ≤ a)=FX (b)−FX (a).

• Pr(a≤X < b)=Pr(X < b)−Pr(X < a)= limx↗b FX (x)− limx↗a FX (x).
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Example of CDF: rolling an ideal dice

Suppose that we roll an ideal six-sided dice. The PMF is given as follows.

x 1 2 3 4 5 6

PX (x)BPr(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

Table: The PMF of rolling an ideal six-sided dice
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Example of CDF: rolling an ideal dice

Suppose that we roll an ideal six-sided dice. The CDF is given as follows.

x

y

O

y=FX (x)

x (−∞,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,+∞)

FX (x)BPr(X = x) 0 1
6

2
6

3
6

4
6

5
6 1

Table: The CDF of rolling an ideal six-sided dice
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Example of CDF: rolling an ideal dice

Suppose that we roll an ideal six-sided dice. The CDF is given as follows.

x

y

O

y=FX (x)

+2.5

FX (+2.5)=+2
6

+5.2

FX (+5.2)=+5
6

Using the CDF, we can calculate the probability of various events. For example,

Pr(+2.5<X ≤+5.2)=Pr(X ≤+5.2)−Pr(X ≤+2.5)

=FX (+5.2)−FX (+2.5)

= 5
6
− 2

6
= 3

6
.

(4)
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Example of CDF: rolling an ideal dice
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Example of CDF: student score frequency

Suppose that X is a random variable whose PMF is given as follows.

x 0 1 2 3 4 5

PX (x)BPr(X = x) 0.15 0.10 0.15 0.25 0.30 0.05

Table: The PMF of a student exam result frequency

The CDF is given as the cumulative sum of the PMF, as follows.

x (−∞,0) [0,1) [1,2) [2,3) [3,4) [4,5) [5,+∞)

FX (x)BPr(X = x) 0.00 0.15 0.25 0.40 0.65 0.95 1.00

Table: The CDF of a student exam result frequency
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Example of CDF: student score frequency

The CDF is given as the cumulative sum of the PMF, as follows.

x (−∞,0) [0,1) [1,2) [2,3) [3,4) [4,5) [5,+∞)

FX (x)BPr(X = x) 0.00 0.15 0.25 0.40 0.65 0.95 1.00

Table: The CDF of a student exam result frequency

The graph of the CDF is as follows.

x

y

O

1.0
y=FX (x)
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Properties of CDF

For any random variable X, its CDF FX satisfies

• limx→−∞FX (x)= 0.

• limx→+∞FX (x)= 1.

• The CDF is everywhere right-continuous, i.e., limx↘x0 FX (x)=FX (x0) for all x0 ∈R.

• The CDF has its left-limit limx↗x0 FX (x) for all x0 ∈R.
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Appendix: the definition of the left limit

Definition (left/right limit/continuous)

Let f :R→R be a real function and a be a real value.
Suppose that for all δ> 0 there exists ϵ> 0 such that

∣∣f (a−ϵ′
)−c

∣∣< δ for all ϵ′ that satisfies
0< ϵ′ < ϵ.
Then the value c is called the left limit of a function f at a ∈R and denoted by limx↗a f (x).
We have the definition of the right limit by replacing

(
a−ϵ′

)
with

(
a+ϵ′

)
in the definition of the left

limit.
The right limit is denoted by limx↘a f (x).
A function f is called left continuous at a ∈R if limx↗a f (x)= f (a) and right continuous at a ∈R if
limx↘a f (x)= f (a).
If a function is left/right continuous at every value in its domain, then we simply call the function
left/right continuous.
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Appendix: relation between the limit and the left and right limits

Theorem

Let f :R→R be a real function and a be a real value.

• limx→a f (x)= c if and only if limx↗a f (x)= limx↘a f (x)= c.

• f is continuous at a if and only if f is left continuous and right continuous at a.
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Summary statistics

Motivation: A probability mass function might have too much information to understand
the behaviour of a random variable intuitively.

Hence, we often want to calculate a single value (or a few values) that describes a
distribution, called a descriptive statistic or summary statistic3.

3These words are often used to distinguish them from inferential statistics.
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Summary statistics: examples

Central tendency measures give a representative value of the values that the random
variable takes, e.g., expectation, median, mode, etc.

Variability measures show how spread values the random variable takes, e.g., range,
variance, standard deviation, quartile deviation.

Other measures e.g., kurtosis, skewness.
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Definition of expectation (mean)

The most fundamental central tendency measure of a distribution is the expectation.

Definition (Expectation of a discrete RV)

The expectation of a discrete random variable X, denoted by EX, EX, 〈X〉, or X, is the weighted
mean of the values with the probability masses as weights. That is

EXB
∑

x∈X

xPX (x). (5)

The expectation is also called the mean. Indeed, if the probability distribution is a
frequency of data points, the expectation is nothing but the mean of the data points.
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Example of expectation calculation

Suppose that X is a random variable whose PMF PX is given by the following table.

x −2 −1 0 +1 +2
PX (x) 0.05 0.10 0.20 0.10 0.55

xPX (x)

−0.10 −0.10 0.00 +0.10 +1.10

Table: Example random function and its PMF.

We can calculate the expectation EX by the following procedure.

• Step 1:

Calculate xPX (x) for each x ∈X .

• Step 2:

Evaluate the sum
∑

x∈X xPX (x), which equals the expectation EX.

In the above case, the expectation EX is given by
EX = (−0.10)+ (−0.10)+0.00+0.10+1.10= 1.00.
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We can calculate the expectation EX by the following procedure.

• Step 1: Calculate xPX (x) for each x ∈X .

• Step 2:

Evaluate the sum
∑

x∈X xPX (x), which equals the expectation EX.

In the above case, the expectation EX is given by
EX = (−0.10)+ (−0.10)+0.00+0.10+1.10= 1.00.
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Expectation of a function

If X is a random variable and f is a function, f (X) is again a random variable. Hence, we
can define the expectation of f (X).

The expectation E f (X) often gives us important information as well as the original
expectation EX. The most important example is the variance of a random variable,
which is the most frequently used variability measure.
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The expectation is easily “warped” by outliers.

If a distribution takes some extremely large or small values, called outliers, the
expectation is significantly influenced by the probability of the random variable taking
such values.

Example (Imbalanced score distribution)

Suppose you got a score of 99 in an exam where 100 students participated and the expectation
was 99, you might feel you did very well.
However, it might be just that one student who got a score of 1 decreased the expectation
significantly, as follows.

Score x 1 99 100

# students mx 1 1 98
PX BPr(X = x)= mx

m 0.01 0.01 0.98

Table: Exam result data points and the frequency.
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Outline

1 Random variables

Median
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Median’s idea

If a random value takes an extremely large or small value in a small probability, some
might want to use the median as a summary statistic.

Roughly speaking, the median is defined so that the random variable is larger than the
median in 50% probability and smaller than the median in 50% probability.

© SUZUKI, Atsushi 37



Median’s idea

If a random value takes an extremely large or small value in a small probability, some
might want to use the median as a summary statistic.

Roughly speaking, the median is defined so that the random variable is larger than the
median in 50% probability and smaller than the median in 50% probability.

In other words, the median is the value x such that the graph y=FX (x) of the CDF
crosses the horizontal line y= 1

2 .
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Median’s idea

If a random value takes an extremely large or small value in a small probability, some
might want to use the median as a summary statistic.

Roughly speaking, the median is defined so that the random variable is larger than the
median in 50% probability and smaller than the median in 50% probability.

If the CDF graph has a horizontal segment on y= 1
2 , the median is the middle point of the

segment.
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Median’s idea

If a random value takes an extremely large or small value in a small probability, some
might want to use the median as a summary statistic.

Roughly speaking, the median is defined so that the random variable is larger than the
median in 50% probability and smaller than the median in 50% probability.
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Definition of median

Definition (The definition of the median)

Let P :R→ [0,1] be the probability mass function of a univariate discrete random variable X. If a
real value M ∈R satisfies the following equation, then M is called a median of the distribution of X:

Pr(X ≤M)≥ 1
2

and Pr(X ≥M)≥ 1
2

. (6)

We can often see the above definition in the context of probability theory.
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The definition of the median

Definition (The definition of the median)

Let P :R→ [0,1] be the probability mass function of a univariate discrete random variable X.
Define the values M and M by If a real value M ∈R satisfies the following equation, then M is
called a median of the distribution of X:

MBmin
{

M ∈R

∣∣∣∣Pr(X ≤M)≥ 1
2

and Pr(X ≥M)≥ 1
2

}
,

MBmax
{

M ∈R

∣∣∣∣Pr(X ≤M)≥ 1
2

and Pr(X ≥M)≥ 1
2

}
.

(7)

The median M is defined as the midpoint of M and M, i.e., MB M+M
2 .

The above definition looks complicated, but it is in fact easy if we see the CDF graph.
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The definition of the median by the CDF graph

If the CDF graph “crosses” the graph of y= 1
2 ,

x

y

O

1
2

y=FX (x)

If the CDF graph has a horizontal segment on y= 1
2 ,

x

y

O

1
2

y=FX (x)
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The definition of the median by the CDF graph

If the CDF graph “crosses” the graph of y= 1
2 ,
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Median of frequency for an odd data point case

By definition, the median of the frequency of (2k+1) data points is the value of the
(k+1)th largest data point. This is equivalent to the (k+1)th smallest data point. In this
sense, the definition is symmetric. The value is simply called the median of the data
points.

For example, if we have 7 sorted data points (−2.5,−1.0,+0.2,+1.4,+2.6,+3.3,+4.0),
then the median is the value of the 4th largest (or equivalently, the 4th smallest) data
point, which is +1.4.

x

y

O

1
2

−2.5 −1.0 +0.2 +1.4 +2.6 3.3 4.0

y=FX (x)

© SUZUKI, Atsushi 41



Median of frequency for an even data point case

By definition, the median of the frequency of 2k datapoints is the middle point of the
values of the kth and k+1th largest data points. This is equivalent to the middle point of
the values of the kth and k+1th largest data points. In this sense, the definition is
symmetric. The value is simply called the median of the data points.

For example, if we have 6 sorted data points (−2.5,−1.0,0.2,+1.4,+2.6,+3.5), then the
median is the middle point of the values of the 3rd and 4th largest (or equivalently, the 3rd
and 4th smallest) data points, which is 0.2+1.4

2 = 0.8.

x

y

O

1
2

−2.5 −1.0 +0.2 +0.8 +1.4 +2.6 +3.3

y=FX (x)
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Median of imbalanced data

Example

Consider the following exam results of 100 participants given by the following table and the
frequency of the data points.

Score x 1 99 100

# students mx 1 1 98
PX BPr(X = x)= mx

m 0.01 0.01 0.98

Table: Exam result data points and the frequency.

Since we have 100 students, which is an even number, the median is the middle point of the
50th-best student’s score and the 51th-best student’s score, which is 100.
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Median tends to ignore “minor” data points

It is not that the median is a perfect statistic. Indeed, the median tends to ignore a
relatively minor cohort even though the size of the cohort is not ignorable.

Example

Consider the following exam results of 100 participants given by the following table and the
frequency of the data points.

Score x 0 100

# students mx 49 51
PX BPr(X = x)= mx

m 0.49 0.51

Table: Exam result data points and the frequency.

Then, the median is the middle point of the 50th-best student’s score and the 51th-best student’s
score, which is 100. However, this median ignores the 49%, who received zero scores.
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Outline

1 Random variables

Variance and a function of a random variable
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The basic idea of variance as a variability measure

Variability measures show how much the random variable deviates from the “center”.

The most representative one is the variance, defined based on the square deviation.

Let X be a random variable and µ be its expectation. The square deviation of X is
defined as

(
X −µ

)2. If X is far (whether large or not) from µ, the square deviation
(
X −µ

)2

is large.

Hence, we expect to create a variability measure using
(
X −µ

)2.

But, what is
(
X −µ

)2?

Since it depends on the value of X,
(
X −µ

)2 is (the output value of)
a function of X, and since X is a random variable,

(
X −µ

)2 is also a random variable!

The variance is nothing but the expectation of the RV
(
X −µ

)2. To understand this
amount, let’s discuss the function of random variables in general.
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A function of a random variable

Let f :R→R be a function and X be a random variable.

If we input X to f , the return value f (X) is also a random variable.

In particular, if X is a discrete RV, then f (X) is also a discrete RV. Specifically, if the
support of X is X , then the support of f (X) is {f (x)|x ∈X }.

Let’s find its PMF Pf (X).
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Suppose that we are interested in the behavior of f (X). The variable f (X) is also a
random variable since it depends on the random behavior of the RV X.

Now, what are the support, the PMF, and the expectation of f (X)=X2?
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s find the support of f (X)=X2. The RV X takes a value in X = {−1,0,+1}. Since
f (−1)= (−1)2 =+1, f (0)= (0)2 = 0, and f (+1)= (+1)2 =+1, The RV f (X)=X2 only takes a
value 0 or +1 only. Hence the support of f (X)=X2 is {0,+1}. In particular, f (X) is also a
discrete RV.
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s find the PMF PX2 .

By definition PX2(0)=Pr
(
X2 = 0

)
.

Since X2 = 0⇔X = 0 holds,4 we have that Pr
(
X2 = 0

)=Pr(X = 0)= 0.3.

This case is easy since only one value of X corresponds to X2 = 0.

4The symbol ⇔ indicates a necessary and sufficient condition, or equivalence.
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s find the PMF PX2 .

By definition PX2(1)=Pr
(
X2 = 1

)
.

Since “X2 = 1” ⇔ “X =−1 or X =+1” holds, we have that

Pr
(
X2 = 1

)=Pr(“X =−1 or X =−1”)
=Pr(X =−1)+Pr(X =+1)= 0.2+0.5= 0.7.

(8)

Here, the second equation comes from the sum law since “X =−1 and X =−1” do not
happen at the same time.
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

To wrap up,

y 0 +1
PX2(y) 0.3 0.7

Table: The PMF of X2.

© SUZUKI, Atsushi 48



Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s evaluate the expectation E f (X)= EX2.
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s evaluate the expectation E f (X)= EX2. If we use the PMF of X2, it looks like

EX2 = 0 ·PX2(0)+ (+1) ·PX2(+1)
= 0 ·0.3+ (+1) ·0.7.

(8)
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Example of a function of a RV

Define f by f (x)= x2, and suppose the PMF PX is given by the following table.

x −1 0 +1
PX (x) 0.2 0.3 0.5

Table: Example random function and its PMF.

Let’s evaluate the expectation E f (X)= EX2. Since PX2(0) equals PX (0) and PX2(+1)
equals the sum PX2(−1)+PX2(+1), we can rewrite it using PX only.

EX2 = 0 ·PX2(0)+ (+1) ·PX2(+1)

= 02 ·PX (0)+ [
(−1)2 ·PX (−1)+ (+1)2 ·PX (+1)

]
= ∑

x∈{−1,0,+1}
f (x)PX (x)

(8)
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Behaviors of A function of a RV

If we generalize the previous discussion, we have the following theorem.

Theorem

Suppose that X is a RV and f :R→R are a real-valued function taking a real variable as an input.
Then, f (X) is also a RV.
In particular, if X is a discrete RV, f (X) is also a discrete RV. Furthermore, if the support and PMF
of X are denoted by X and PX , respectively,

• The support of f (X) is {f (x)|x ∈X },

• The PMF Pf (X) is given by Pf (X)(y)=
∑

x∈{x′|f (x′)=y}
PX (x),

• The expectation E f (X) is given by E f (X)=
∑

x∈X

f (x)PX (x).
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The linearity of the expectation

The expectation operator E has the property called linearity , which often makes the
expectation calculation of a complicated function easier.

Theorem (The linearity of the expectation)

Let X be a random variable, a,b ∈R be real numbers, and f ,g :R→R be real-valued functions
taking a real variable. Then, we have that

E [af (X)+bg(X)]= aE f (X)+bEg(X). (9)

The above theorem provides us with the formula for the expectation calculation of a linear
function of a RV.

Corollary

Let X be a random variable and a,b ∈R be real numbers. Then, we have that

E [aX +b]= aEX +b. (10)

We obtain the above corollary by the substitutions f (x)= x and g(x)= 1 in the theorem.
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Example of a linear function’s expectation

Example

Suppose that X is a random variable whose PMF PX is given by the following table.

x −2 −1 0 +1 +2
PX (x) 0.05 0.10 0.20 0.10 0.55

Table: Example random function and its PMF.

The expectation is given by EX = 1.00.
Let’s consider the random function given by −3X +5 and its expectation.
According to the formula, E [−3X +5]=−3EX +5= (−3) ·1.00+5= 2.00.
Note that the PMF P−3X+5 is given by the following, which we did not use to calculate E [−3X +5].

x +11 +8 +5 +2 −1
P−3X+5(x) 0.05 0.10 0.20 0.10 0.55

Table: The PMF of −3X +5.
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Proof: the linearity of the expectation

Proof.

E [af (X)+bg(X)]=
∑

x∈X

[af (x)+bg(x)]PX (x)

= a
∑

x∈X

f (x)PX (x)+b
∑

x∈X

g(x)PX (x)

= aE f (X)+bEg(X).

(11)

□
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Definition of variance

Recall the basic idea of the variance.

Let X be a random variable and µ be its expectation. The square deviation of X is
defined as

(
X −µ

)2. If X is far (whether large or not) from µ, the square deviation
(
X −µ

)2

is large. Hence, we can regard its expectation as a variability measure. This is the idea of
the variance.

Definition (Variance)

Let X be a random variable and assume that the expectation µB EX exists. Then, the variance
V[X] ∈R≥0 is defined as the expectation of the squared deviation 4 (

X −µ
)2, that is,

V[X]B E
(
X −µ

)2. (12)

4One reason for considering the square is to ignore the sign. For the same reason, the expectation of the absolute deviation is also used. However, the
variance, the expectation of the squared deviation, is much more often used owing to the central limit theorem.
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Calculating the variance

Recall that the variance is defined by V[X]B E
(
X −µ

)2. Using the formula to calculate the
expectation of the discrete RV, we get the following formula to calculate the variance of a
discrete random variable.

Theorem

Let X be a discrete random variable taking values in X ⊂R. Also, suppose that µB EX and
PX : X → [0,1] are its expectation and PMF, respectively.
The variance V[X] is given by

V[X]=
∑

x∈X

(
x−µ

)2PX (x). (13)
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Example of variance calculation

x −2 −1 0 +1 +2
Probability mass PX (x) 0.05 0.10 0.20 0.10 0.55

Deviation x−µx

−3.00 −2.00 −1.00 ±0.00 +1.00

Square deviation
(
x−µX

)2

9.00 4.00 1.00 0.00 1.00

Weighted sq. dev.
(
x−µX

)2PX (x)

0.45 0.40 0.20 0.00 0.55

Table: Example random function and its PMF.

• Step 1: Calculate the expectation µX = EX of X.
In the above example, we have µX = EX =+1.00.

• Step 2:

Calculate the deviation x−µX , the square deviation
(
x−µX

)2, and the
weighted square deviation

(
x−µX

)2PX (x) for every x ∈X .

• Step 3:

Take the sum
∑

x∈X

(
x−µX

)2PX (x).
In the above example, we have
V[X]=∑

x∈X

(
x−µX

)2PX (x)= 0.45+0.40+0.20+0.00+0.55

= 1.60.
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Example of variance calculation

x −2 −1 0 +1 +2
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x−µX

)2PX (x).
In the above example, we have
V[X]=∑

x∈X

(
x−µX

)2PX (x)= 0.45+0.40+0.20+0.00+0.55

= 1.60.
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Example of variance calculation
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Another formula of the variance

The following formula is also useful.

Theorem

Let X be a discrete random variable taking values in X ⊂R. Also, suppose that µB EX and
PX : X → [0,1] are its expectation and PMF, respectively.
The variance V[X] is given by

V[X]= EX2 −µ2 = ∑
x∈X

x2PX (x)−
( ∑

x∈X

xPX (x)

)2

. (14)

Proof.

V[X]= E
[(

X −µ
)2

]
= E

[
X2 −2µX +µ2]= EX2 −2µ ·µ+µ2 = EX2 −µ2. (15)

□
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The variance of a linear function

Theorem

Let X be a random variable and a,b ∈R be real numbers. Then we have that

V[aX +b]= a2V[X]. (16)

In particular, the variance does not depend on b.
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Example of calculating the variance of a linear function

Example

Suppose that X is a random variable whose PMF PX is given by the following table.

x −2 −1 0 +1 +2
PX (x) 0.05 0.10 0.20 0.10 0.55

Table: Example random function and its PMF.

The variance is given by V[X]= 1.60.
Let’s consider the random function given by −3X +5 and its variance.
According to the formula, V[−3X +5]= (−3)2V[X]= (−3)2 ·1.60= 14.40.
Note that we did not use the PMF of −3X +5 to calculate V[−3X +5].
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Standard deviation

Variance’s interpretation is somewhat tricky since its effect against scaling is not “linear.”
Specifically, the variance of 10X is 100 times as large as that of X.

To make it “linear”, we consider the square root of the variance, called the standard
deviation of the random variable.

Definition (Standard deviation)

The standard deviation σ[X] ∈R of the random variable X is defined as

σ[X]B
√
V[X]. (17)
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Example of the standard deviation calculation

Example

Suppose that X is a random variable whose PMF PX is given by the following table.

x −2 −1 0 +1 +2
PX (x) 0.05 0.10 0.20 0.10 0.55

Table: Example random function and its PMF.

The variance is given by V[X]= 1.60.
Hence, the standard deviation σ[X] is given by σ[X]= p

V[X]= p
1.60= 1.2649 . . .
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The standard deviation of a linear function

Theorem

If f is a linear function, i.e., if f (x)= ax+b, where a,b ∈R, then we have that

σ[f (X)]=σ[aX +b]= |a|σ[X]. (18)

In particular, the standard deviation does not depend on b.

Hence, as we expected, the standard deviation of 10X is 10 times as large as that of X.
In this sense, the standard deviation is “linear.”

Note that the standard deviation is always non-negative. In particular, σ[−10X] equals
10σ[X], but not −10σ[X]. This is an expected behavior since we originally wanted to
measure the variability, which does not change even if we flip the sign.
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1 Random variables

Exercises
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Exercise (Empirical distribution)

Consider a group of m= 20 students and their scores on a test. The scores are integers within the
set X = {0,1,2,3,4,5}. For x ∈X , let mx denote the number of students scoring x points. The
results are given in the table below:

Score x 0 +1 +2 +3 +4 +5
Number of students mx 3 2 3 5 6 1

Find the frequency (empirical distribution) of the data. Or, define a random variable X as the score
when a student is chosen uniformly at random and calculate the probability mass function PX .
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Example answer:

The total number of data points is m, and for a value x, the number of data points taking
the value x is mx. Therefore, the probability mass function of the empirical distribution at
x is given by mx

m . Hence, PX (0)= 3
20 = 0.15, PX (1)= 2

20 = 0.10, PX (2)= 3
20 = 0.15,

PX (3)= 5
20 = 0.25, PX (4)= 6

20 = 0.30, PX (5)= 1
20 = 0.05.
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Exercise (Descriptive statistics)

Let X be a discrete random variable, with its probability mass function PX given by the table below:

x −2 −1 0 +1 +2
PX (x) 0.05 0.10 0.20 0.10 0.55

(1) Write down the cumulative distribution function (CDF) of X, FX .
Additionally, evaluate the median of X, denoted as medX .

(2) Evaluate the expectation, variance, and standard deviation of X, denoted as µX , σ2
X , σX

respectively.

(3) Define a new random variable Z= 5X −2. Evaluate the expectation and variance of Z, denoted
as µZ, σ2

Z respectively.
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Example answer:

(1) The cumulative distribution function FX is defined as FX (x) :=Pr(X ≤ x). For example,
FX (+0.5)=Pr(X ≤+0.5)=PX (−2)+PX (−1)+PX (0)= 0.35. In the case of a discrete
random variable, the CDF appears as a step function. Specifically, within intervals that
carry no probability mass, the CDF remains constant. Whenever a discrete random
variable X carries probability mass at x= a, meaning PX (a)> 0, the value of the CDF FX
increases by PX (a) at x= a. Therefore,

FX (x)=



0 if x<−2,
0.05 if −2≤ x<−1,
0.15 if −1≤ x< 0,
0.35 if 0≤ x<+1,
0.45 if +1≤ x<+2,
1 if x≥+2.
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Example answer:

(1, continued) The median of X, denoted as medX , is the value of x where the graph of
y=FX (x) crosses the horizontal line y= 1

2 . Precisely, if for some real number a,
lim
x↗a

FX (x)< 0.5 and FX (a)> 0.5, then a is the median of X. In this case, since

lim
x↗+2

FX (x)= 0.45 and FX (+2)= 1, the graph of y=FX (x) crosses the horizontal line y= 1
2

at x= 2, making the median of X equal to +2.
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Example answer:

(2) For expectation and variance, generally, if X is a discrete random variable with
support X and probability mass function PX , then the expectation µX , variance σ2

X , and
standard deviation σX are given by:

µX = ∑
x∈X

xPX (x),

σ2
X = ∑

x∈X

(x−µX )2PX (x)= ∑
x∈X

x2PX (x)− (µX )2,

σX =
√

σ2
X .

Thus, µX = (−2) ·0.05+ (−1) ·0.10+0 ·0.20+ (+1) ·0.10+ (+2) ·0.55=+1,
σ2

X =∑
x∈X x2PX (x)− (µX )2 =

(−2)2 ·0.05+ (−1)2 ·0.10+02 ·0.20+ (+1)2 ·0.10+ (+2)2 ·0.55−1.02 = 1.6, and
σX = p

1.6≈ 1.264.
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Example answer:

(3) For a transformed random variable Z= aX +b, the general formulas for expectation
and variance are µZ = aµX +b and σ2

Z = a2σ2
X . Hence, in this scenario, µZ = 5µX −2=+3

and σ2
Z = 52σ2

X = 40. Alternatively, calculating the probability mass function of Z and then
computing expectation and variance in the same manner as done for X is also valid. Note
that the probability mass function PZ of Z is given by the following table.

z −12 −7 −2 +3 +8
PZ(z) 0.05 0.10 0.20 0.10 0.55
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Exercise (Coin toss)

Consider defining a discrete random variable X through a coin toss, where the coin is placed on a
finger with one side up, flicked, and then observed which side lands facing up. The support of X is
{−1,+1}, with X =+1 if the side that was initially up is also up after the coin lands, and X =−1
otherwise. The probability mass function PX of X is given by the following table:

x −1 +1
PX (x) 0.492 0.508

Given this, calculate the expected value and median of X, denoted as µX and medX respectively.
It is known that coin tosses in the real world follow a probability distribution closely resembling the
one described above.
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Example answer:

For a discrete random variable X with set X and probability mass function PX , the
expected value µX is given by µX =∑

x∈X xPX . Thus, for this problem,
µX = (−1) ·0.492+ (+1) ·0.508= 0.016.

If for some real number a, lim
x↗a

FX (x)< 0.5 and FX (a)> 0.5, then a is the median of X.

Since lim
x↗1

FX (x)= 0.492 and FX (1)= 1, the median of X is 1.

© SUZUKI, Atsushi 71



Exercise (Average Income)

A village of 999 people had everyone earning an annual income of 10,000 pounds. The village
chief aimed to double the average annual income of the village’s residents. The next day, the
village chief invited a billionaire with an annual income of x pounds, who then became a resident
of the village. While the incomes of the other 999 residents remained unchanged, the billionaire’s
relocation resulted in the village’s average annual income rising to 20,000 pounds.
Calculate the billionaire’s annual income x.
Additionally, find the median annual income of the village’s residents before and after the
billionaire’s relocation.
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Example answer:

The average of a set of data is the expected value of the frequency (empirical distribution)
of the data, which can be calculated as the total sum of the data divided by the number of
data points. Conversely, if the average and the number of data points are known, the total
sum of the data can be found by multiplying these two values. Therefore, before the
billionaire’s relocation, the total annual income of the villagers was 999×10000= 9990000
pounds, and after the relocation, it became 1000×20000= 20000000 pounds. Hence, the
billionaire’s annual income is 10010000 pounds.

The median annual income of the villagers before the billionaire’s relocation is the 500th
value when sorting the incomes of 999 villagers, all of whom earn 10000 pounds, thus
the median is naturally 10000 pounds. After the relocation, the median of the annual
incomes of 1000 villagers is the average of the 500th and 501st values from the top,
again all 999 others earn 10000 pounds, so the median remains 10000 pounds.
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2 Multiple Random Variables

Introduction: why are multiple random variables less trivial?
Joint distribution
Marginal distribution
Conditional distribution
Independence of random variables
Summary statistics for multiple RVs and covariance
Correlation
Exercises
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2 Multiple Random Variables

Introduction: why are multiple random variables less trivial?
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Multiple random variables

There are many cases where we handle multiple random variables (multiple RVs) in real
applications as follows.

Example

• The prices of multiple stocks.

• The pixels of an image taken in the real world.

• The values at each time frame in a wave file of a human speech.

Since we deal with many multiple RVs in many real applications, it is natural to discuss
them. A naïve way to handle multiple RVs is to apply the theory for a univariate RV to
each of the multiple RVs that we are interested in. Is it sufficient?

The answer is NO. Specifically, when we consider multiple random variables, knowing
each probability mass function (PMF) is not sufficient to know their stochastic behavior
completely.
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Knowing multiple RVs , knowing multiple PMFs

The following example shows that knowing the PMF for each RV is not sufficient to
completely understand the random behavior of multiple RVs.

Example

Let X and Y be discrete RVs, whose supports are both {−1,+1}. Also, suppose that we know that
the PMFs PX and PY are given by PX (−1)=PX (+1)=PY (−1)=PY (+1)= 0.5.
Now, we know the exact distribution of X and Y. Still, we do not know the behavior of X and Y
completely. For example, the above information does not determine the probability
Pr(X =−1∧Y =−1), where ∧ indicates the logical “and” operator.

To know the random behavior of multiple RVs, we need to know the distribution of the
pair (X,Y), which is called the joint distribution of the random variables X and Y. How
to describe the joint distribution is the starting point of this section.
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Learning outcomes

By the end of this section, you should be able to:

• Explain why two probability mass functions are not sufficient to describe multiple
random variables,

• Describe multiple random variables using the joint probability mass function and
conditional probability mass function,

• Describe the relation between multiple random variables using covariance,
correlation, and independence, and

• Explain the difference between covariance, correlation, independence, and causality.
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2 Multiple Random Variables

Joint distribution
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Joint distribution and marginal distribution

In general, the joint distribution refers to the distribution of the tuple of multiple random
variables. For example, if we have two random variables X and Y, the joint distribution
refers to the distribution of the pair (X,Y).

In contrast, when we consider multiple random variables, the distribution of a single
random variable is called the marginal distribution of the random variable to distinguish
it from the joint distribution.

© SUZUKI, Atsushi 80



Joint probability mass function (two variable cases)

If we have two discrete random variables X and Y, then just knowing each probability
mass function is not sufficient. Rather, what we need to know is the probability of the pair
(X,Y) taking every pair of values (x,y) ∈X ×Y . That is, the following joint probability
mass function (joint PMF) has all the information that we need.

Definition (two-variable Joint PMF)

Let X and Y be discrete random variables taking a value in discrete sets X and Y , respectively,
where X ,Y ⊂R. We define the joint probability mass function (joint PMF)
PX,Y : X ×Y → [0,1] of the pair of random variables X,Y by

PX,Y (x,y)BPr(X = x∧Y = y), (19)

where ∧ indicates the logical “and” operator.
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Properties of a joint PMF

From the properties of a probability distribution, we can easily see that a joint PMF
satisfies the following.

Theorem

Let X and Y be discrete RVs and the joint PMF be PX,Y .
Then, we have the following.

• The probability mass is nonnegative everywhere, i.e., 0≤PX,Y (x,y)≤ 1 for all (x,y) ∈X ×Y .

• The sum of the probability masses is one, i.e.,
∑

x∈X

∑
y∈Y

PX,Y (x,y)= 1.
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Joint PMF example

Example

Let X and Y be the scores of a math test and a history test, respectively, where we
uniform-randomly sample a student. In other words, X and Y are frequencies.
Then X and Y be discrete random variables. The joint PMF may look like the following.

x
0 1 2 3

y
0 0.16 0.04 0.02 0.06
1 0.18 0.04 0.04 0.16
2 0.06 0.02 0.08 0.14

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

Also, we can see that the sum of the probability masses is one, i.e.,
∑

x∈X

∑
y∈Y

PX,Y (x,y)= 1.
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Joint PMF example

Example

Let X and Y be the scores of a math test and a history test, respectively, where we
uniform-randomly sample a student. In other words, X and Y are frequencies.
Then X and Y be discrete random variables. The joint PMF may look like the following.

x
0 1 2 3

y
0 0.16 0.04 0.02 0.06
1 0.18 0.04 0.04 0.16
2 0.06 0.02 0.08 0.14

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

Here, for example, Pr(X = 2∧Y = 1)=PX,Y (2,1)= 0.04.

Also, we can see that the sum of the
probability masses is one, i.e.,

∑
x∈X

∑
y∈Y

PX,Y (x,y)= 1.
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Joint PMF example

Example

Let X and Y be the scores of a math test and a history test, respectively, where we
uniform-randomly sample a student. In other words, X and Y are frequencies.
Then X and Y be discrete random variables. The joint PMF may look like the following.

x
0 1 2 3

y
0 0.16 0.04 0.02 0.06
1 0.18 0.04 0.04 0.16
2 0.06 0.02 0.08 0.14

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can confirm that the probability mass is nonnegative everywhere, i.e.,
0≤PX,Y (x,y)≤ 1 for all (x,y) ∈X ×Y .

Also, we can see that the sum of the probability masses is
one, i.e.,

∑
x∈X

∑
y∈Y

PX,Y (x,y)= 1.
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Joint PMF example

Example

Let X and Y be the scores of a math test and a history test, respectively, where we
uniform-randomly sample a student. In other words, X and Y are frequencies.
Then X and Y be discrete random variables. The joint PMF may look like the following.

x
0 1 2 3

y
0 0.16 0.04 0.02 0.06
1 0.18 0.04 0.04 0.16
2 0.06 0.02 0.08 0.14

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

Also, we can see that the sum of the probability masses is one, i.e.,
∑

x∈X

∑
y∈Y

PX,Y (x,y)= 1.
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Joint probability mass function (general cases)

If we have m discrete random variables X1,X2, . . . ,Xm, then all we need to know is the
following joint PMF.

Definition (Joint PMF (general cases))

Let X1,X2, . . . ,Xm be discrete random variables taking a value in discrete sets X1,X2, . . . ,Xm ⊂R,
respectively. We define the joint probability mass function (joint PMF)
PX1,X2,...,Xm : X1 ×X2 ×·· ·×Xm → [0,1] of random variables X1,X2, . . . ,Xm by

PX1,X2,...,Xm (x1,x2, . . . ,xm)BPr(X1 = x1,X2 = x2, . . . ,Xm = xm). (20)
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2 Multiple Random Variables

Marginal distribution
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Marginal PMF (two variable cases)

The joint PMF can tell us the PMFs of each discrete random variable, called marginal
PMF . For two discrete random variables X and Y that takes a value in X and Y ,
respectively, suppose that the joint PMF is PX,Y : X ×Y → [0,1]. Then, the marginal
PMFs PX and PY are given by

PX (x)=
∑

y∈Y

PX,Y (x,y), PY (y)=
∑

x∈X

PX,Y (x,y), (21)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x)

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (0)=PX,Y (0,0)+PX,Y (0,1)+PX,Y (0,2)
= 0.10+0.24+0.06

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (0)=PX,Y (0,0)+PX,Y (0,1)+PX,Y (0,2)
= 0.10+0.24+0.06= 0.40.

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (1)=PX,Y (1,0)+PX,Y (1,1)+PX,Y (1,2)
= 0.02+0.08+0.00

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (1)=PX,Y (1,0)+PX,Y (1,1)+PX,Y (1,2)
= 0.02+0.08+0.00= 0.10.

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (2)=PX,Y (2,0)+PX,Y (2,1)+PX,Y (2,2)
= 0.02+0.12+0.06

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (2)=PX,Y (2,0)+PX,Y (2,1)+PX,Y (2,2)
= 0.02+0.12+0.06= 0.20.

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (3)=PX,Y (3,0)+PX,Y (3,1)+PX,Y (3,2)
= 0.06+0.06+0.18

(22)

© SUZUKI, Atsushi 87



Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PX (3)=PX,Y (3,0)+PX,Y (3,1)+PX,Y (3,2)
= 0.06+0.06+0.18= 0.30.

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (0)=PX,Y (0,0)+PX,Y (1,0)+PX,Y (2,0)+PX,Y (3,0)
= 0.10+0.02+0.02+0.06

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (0)=PX,Y (0,0)+PX,Y (1,0)+PX,Y (2,0)+PX,Y (3,0)
= 0.10+0.02+0.02+0.06= 0.20.

(22)

© SUZUKI, Atsushi 87



Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (1)=PX,Y (0,1)+PX,Y (1,1)+PX,Y (2,1)+PX,Y (3,1)
= 0.24+0.08+0.12+0.06

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06 0.50
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (1)=PX,Y (0,1)+PX,Y (1,1)+PX,Y (2,1)+PX,Y (3,1)
= 0.24+0.08+0.12+0.06= 0.50.

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06 0.50
2 0.06 0.00 0.06 0.18

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (2)=PX,Y (0,2)+PX,Y (1,2)+PX,Y (2,2)+PX,Y (3,2)
= 0.06+0.00+0.06+0.18

(22)
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Marginal distribution example

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06 0.50
2 0.06 0.00 0.06 0.18 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

In the above example, we can calculate the marginal PMF from the joint PMF as follows.

PY (2)=PX,Y (0,2)+PX,Y (1,2)+PX,Y (2,2)+PX,Y (3,2)
= 0.06+0.00+0.06+0.18= 0.30.

(22)
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Conditional distribution
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Conditional distribution

If two RVs are “related,” then we get more precise information about a RV’s distribution by
knowing the value of the other RV.

The conditional distribution is a piece of such information.

The conditional distribution is the distribution of one RV when we know the value of the
other RV.

The probability mass function (PMF) of the conditional distribution is called the
conditional PMF .
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Conditional distribution example

Let X and Y be discrete RVs, and suppose that their joint PMF PX,Y and marginal PMFs
PX and PY are given by the following table.

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06 0.50
2 0.06 0.00 0.06 0.18 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)
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Conditional distribution example

Let X and Y be discrete RVs, and suppose that their joint PMF PX,Y and marginal PMFs
PX and PY are given by the following table.

x
PY (y)0 1 2 3

y
0 0.10 0.02 0.02 0.06 0.20
1 0.24 0.08 0.12 0.06 0.50
2 0.06 0.00 0.06 0.18 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

Suppose that we know that Y = 2. This information changes the distribution of X. For
example, X = 1 no longer happens, so the probability of the event X = 1 is now zero.

So, for x= 0,1,2,3, what is the probability of “X = x” when we know Y = 2? It is called the
conditional probability of X = x given Y = 2 and denoted by PX|Y (x|2).
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Conditional probability calculation

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30

Table: Joint PMF and conditional PMF

• If we know Y = 2, then the probability masses of X = 0,1,2,3 are proportional to the
joint masses PX,Y (0,2),PX,Y (1,2),PX,Y (2,2),PX,Y (3,2), shown above.

• The sum PX|Y (0|2)+PX|Y (1|2)+PX|Y (2|2)+PX|Y (3|2) of the conditional probabilities
must be 1 for them to be probabilities.

Hence, the conditional probability PX|Y (x|2) is each joint probability over the sum, i.e.,

PX|Y (x|2)= PX,Y (x,2)
PX,Y (0,2)+PX,Y (1,2)+PX,Y (2,2)+PX,Y (3,2)

= PX,Y (x,2)
PY (2)

. (23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y)

Table: Joint PMF and conditional PMF

For example,
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) ?

Table: Joint PMF and conditional PMF

For example,

PX|Y (0|2)= PX,Y (0,2)
PY (2)

(23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20

Table: Joint PMF and conditional PMF

For example,

PX|Y (0|2)= PX,Y (0,2)
PY (2)

= 0.06
0.30

= 0.20 (23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 ?

Table: Joint PMF and conditional PMF

For example,

PX|Y (1|2)= PX,Y (1,2)
PY (2)

(23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00

Table: Joint PMF and conditional PMF

For example,

PX|Y (1|2)= PX,Y (1,2)
PY (2)

= 0.00
0.30

= 0.00 (23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00 ?

Table: Joint PMF and conditional PMF

For example,

PX|Y (2|2)= PX,Y (2,2)
PY (2)

(23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00 0.20

Table: Joint PMF and conditional PMF

For example,

PX|Y (2|2)= PX,Y (2,2)
PY (2)

= 0.06
0.30

= 0.20 (23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00 0.20 ?

Table: Joint PMF and conditional PMF

For example,

PX|Y (3|2)= PX,Y (3,2)
PY (2)

(23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00 0.20 0.60

Table: Joint PMF and conditional PMF

For example,

PX|Y (3|2)= PX,Y (3,2)
PY (2)

= 0.18
0.30

= 0.60 (23)
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Conditional probability calculation example

x
PY (y)0 1 2 3

PX,Y (x,2) 0.06 0.00 0.06 0.18 0.30
PX|Y (x|y) 0.20 0.00 0.20 0.60

PX (x) 0.40 0.10 0.20 0.30

Table: Joint PMF and conditional PMF

You can see that

• The conditional probabilities are different from the marginal probabilities.

• The sum PX|Y (0|2)+PX|Y (1|2)+PX|Y (2|2)+PX|Y (3|2) of the conditional probabilities
is one.

We call the function PX|Y the conditional PMF of X given Y.
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Definition of the conditional PMF

Definition

Let X and Y be discrete random variables, whose supports are X and Y , respectively. In other
words, for any x ∈X and y ∈Y , PX (x)> 0 and PY (y)> 0 holds, where PX and PY are the marginal
PMFs of X and Y, respectively.
Let PX,Y be the joint PMF of X and Y.
We define the conditional PMF PX|Y by

PX|Y (x|y)B
PX,Y (x,y)

PY (y)
. (23)

Likewise, we define the conditional PMF PY|X by

PY|X (y|x)B
PX,Y (x,y)

PX (x)
. (24)
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Note: The conditional probability is not commutable.

Note that PX|Y (x|y),PY|X (y|x) in general.

In this sense, the conditional probability is NOT commutable.
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Conditional probability calculation from joint PMF

In general, we can calculate the conditional PMF from the joint PMF and the marginal
PMF as follows:

PX|Y (x|y)= PX,Y (x,y)
PY (y)

. (25)

Since we can calculate the marginal probability PY (y) by PY (y)=∑
x∈X PX,Y (x,y) using the

joint PMF PX,Y , we can calculate the conditional PMF only from the joint PMF in theory.
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2 Multiple Random Variables

Independence of random variables
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Independence of random variables

Suppose that the conditional PMF always equals the marginal PMF, i.e., PX|Y (x|y)=PX (x)
for all x and y.

It means that Y has no relation to X. In this case, we say that X and Y are independent .

Definition

Let X and Y be discrete random variables. If one of the following equivalent conditions5 holds, we
say that X and Y are independent.

• PX|Y (x|y)=PX (x) for all x ∈X and y ∈Y .

• PY|X (y|x)=PY (y) for all x ∈X and y ∈Y .

• PX,Y (x,y)=PX (x)PY (y) for all x ∈X and y ∈Y .

5Specifically, if one condition holds, then the other two conditions also hold.
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Example of independent random variables

Suppose that the joint PMF of random variables X and Y is given by:

x
PY (y)0 1 2 3

y
0 0.08 0.02 0.04 0.06 0.20
1 0.20 0.05 0.10 0.15 0.50
2 0.12 0.03 0.06 0.09 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

We can confirm that X and Y are mutually independent by checking that
PX,Y (x,y)=PX (x)PY (y) holds for every x ∈X = {0,1,2,3} and y ∈Y = {0,1,2}.
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Example of independent random variables

Suppose that the joint PMF of random variables X and Y is given by:

x
PY (y)0 1 2 3

y
0 0.08 0.02 0.04 0.06 0.20
1 0.20 0.05 0.10 0.15 0.50
2 0.12 0.03 0.06 0.09 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

For example, PX,Y (0,0)= 0.08, which equals to PX (0)PY (0)= 0.40×0.20.
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Example of independent random variables

Suppose that the joint PMF of random variables X and Y is given by:

x
PY (y)0 1 2 3

y
0 0.08 0.02 0.04 0.06 0.20
1 0.20 0.05 0.10 0.15 0.50
2 0.12 0.03 0.06 0.09 0.30

PX (x) 0.40 0.10 0.20 0.30

Table: An example of PX,Y (x,y)BPr(X = x∧Y = y)

For example, PX,Y (2,1)= 0.10, which equals to PX (2)PY (1)= 0.20×0.50.
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2 Multiple Random Variables

Summary statistics for multiple RVs and covariance
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Summary statistics for multiple RVs to show the relation

When we have multiple variables, we can calculate summary statistics for each of the
variables. However, they do not give us information about the relation between multiple
variables.

There are some statistics to show the relation between two RVs.

One principal question about the relation between two random variables X and Y is: “Do
the RVs tend to take (relatively) large values simultaneously?”

If X is easily observable and Y is the value of some product in the near future, then the
information about the above relation financially benefits us.
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The idea of covariance

The question is “Do the RVs tend to take (relatively) large values simultaneously?”

To answer the question, we consider the product of X −µX and Y −µY , where µX B EX
and µY B EX are the expectations of X and Y, respectively.

The value X −µX is positive if X takes a relatively large value and negative if X takes a
relatively small value.

x

y

O µX

µY

Figure:
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The idea of covariance

The question is “Do the RVs tend to take (relatively) large values simultaneously?”

To answer the question, we consider the product of X −µX and Y −µY , where µX B EX
and µY B EX are the expectations of X and Y, respectively.

If X and Y tend to take large values simultaneously and small values simultaneously as
well, then the product

(
X −µX

)(
Y −µY

)
tends to be positive.

x

y

O µX

µY

Figure: The area where
(
X −µX

)(
Y −µY

)
takes a positive value.
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The idea of covariance

The question is “Do the RVs tend to take (relatively) large values simultaneously?”

To answer the question, we consider the product of X −µX and Y −µY , where µX B EX
and µY B EX are the expectations of X and Y, respectively.

Conversely, if one tends to be small when the other is large, then the product(
X −µX

)(
Y −µY

)
tends to be negative.

x

y

O µX

µY

Figure: The area where
(
X −µX

)(
Y −µY

)
takes a negative value.

© SUZUKI, Atsushi 100



The idea of covariance

The question is “Do the RVs tend to take (relatively) large values simultaneously?”

To answer the question, we consider the product of X −µX and Y −µY , where µX B EX
and µY B EX are the expectations of X and Y, respectively.

Hence, we are interested in the value of
(
X −µX

)(
Y −µY

)
. This is the basic idea of

covariance. But what is
(
X −µX

)(
Y −µY

)
?

x

y

O µX

µY

Figure:
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A function of multiple RVs

We say that the variable
(
X −µX

)(
Y −µY

)
is a function of RVs X and Y since it depends

on the RVs X and Y.

We remark that
(
X −µX

)(
Y −µY

)
is a random variable. In particular, it is a discrete RV

since X and Y are discrete RVs. Since it is a random variable, we can define its
expectation E

(
X −µX

)(
Y −µY

)
.

Let’s discuss the general function of multiple RVs and define its expectations.
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A function of multiple RVs and its expectation

Theorem

Suppose that X and Y are random variables and f :R×R→R are a real-valued function taking
two real values as an input. Then, f (X,Y) is a random variable. In particular, suppose that X and
Y are discrete RVs, their supports are X and Y , respectively, and their joint PMF is PX,Y . Then,
f (X,Y) is also a discrete RV and

• The support of f (X,Y) is {f (x,y)|x ∈X ,y ∈Y },

• The PMF Pf (X,Y) is given by

Pf (X,Y)(z)=
∑

(x,y)∈{(x′,y′)|f (x′,y′)=z}
PX,Y (x,y), (26)

• The expectation E f (X,Y) is given by

E f (X,Y)=
∑

(x,y)∈X×Y

f (x,y)PX,Y (x,y). (27)
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The linearity of the expectation: the multi-variable case

From the linearity of the expectation operator E, the following holds.

Theorem (The linearity of the expectation)

Let X,Y be random variables, a,b ∈R be real numbers, and f ,g :R×R→R be real-valued
functions taking two real variables as an input. Then, we have that

E [af (X,Y)+bg(X,Y)]= aE f (X,Y)+bEg(X,Y). (28)

The above theorem provides us with the formula for the expectation calculation of a linear
function of multiple variables.

Corollary

Let X,Y be random variables and a,b,c ∈R be real numbers. Then, we have that

E [aX +bY +c]= aEX +bEY +c. (29)
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Definition of the covariance

Now, we are ready to define the covariance. Recall that the idea of covariance is to
evaluate the behavior of

(
X −µX

)(
Y −µY

)
. In fact, the covariance is nothing but the

expectation of
(
X −µX

)(
Y −µY

)
.

Definition (Covariance)

Let X and Y be RVs and µX B EX and µY B EY be their expectations. We define the covariance
Cov(X,Y) ∈R between the two random variables X and Y by

Cov(X,Y)B E
[(

X −µX
)(

Y −µY
)]

. (30)

Note that the covariance is symmetric, i.e., Cov(X,Y)=Cov(Y,X).

A positive covariance indicates that the two random variables tend to take relatively large
values simultaneously. A negative covariance indicates that when one of the two takes a
relatively large value, then the other tends to take a relatively small value.
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Formulae to calculate the covariance

We provide the explicit calculation formula of the covariance.

Theorem

Suppose that X and Y are discrete RVs, their supports are X and Y , respectively, and their joint
PMF is PX,Y .
Then, the covariance Cov(X,Y) ∈R between the two random variables X and Y is given by

Cov(X,Y)=
∑

(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y). (31)
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Example of covariance calculation

Example

x PY (y)0 +1

y
0 0.25 0.00 0.25
+1 0.25 0.25 0.50
+2 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

•
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Example of covariance calculation

Example

x PY (y)0 +1

y
0 0.25 0.00 0.25
+1 0.25 0.25 0.50
+2 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 1: Calculate the expectations µX = EX and µY = EY. Then memorize the value x−µX
for all x ∈X and y−µY for all y ∈Y .
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Example of covariance calculation

Example

x PY (y)0 +1

y
0 0.25 0.00 0.25
+1 0.25 0.25 0.50
+2 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 1: Calculate the expectations µX = EX and µY = EY. Then memorize the value x−µX
for all x ∈X and y−µY for all y ∈Y .

In the above example, we have µX = EX =+0.50 and µY = EY =+1.00.
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 1: Calculate the expectations µX = EX and µY = EY. Then memorize the value x−µX
for all x ∈X and y−µY for all y ∈Y .

In the above example, we have µX = EX =+0.50 and µY = EY =+1.00.
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 2: Calculate the weighted product of the deviations
(
x−µX

)(
y−µY

)
PX,Y (x,y) for every

(x,y) ∈X ×Y and take the sum.

In the above example, we have Cov(X,Y)=∑
(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y)

= (−0.5) · (−1) ·0.25
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 2: Calculate the weighted product of the deviations
(
x−µX

)(
y−µY

)
PX,Y (x,y) for every

(x,y) ∈X ×Y and take the sum.

In the above example, we have Cov(X,Y)=∑
(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y)

= (−0.5) · (−1) ·0.25+(+0.5) · (−1) ·0.00
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 2: Calculate the weighted product of the deviations
(
x−µX

)(
y−µY

)
PX,Y (x,y) for every

(x,y) ∈X ×Y and take the sum.

In the above example, we have Cov(X,Y)=∑
(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y)

= (−0.5) · (−1) ·0.25+ (+0.5) · (−1) ·0.00+(−0.5) ·0 ·0.25
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 2: Calculate the weighted product of the deviations
(
x−µX

)(
y−µY

)
PX,Y (x,y) for every

(x,y) ∈X ×Y and take the sum.

In the above example, we have Cov(X,Y)=∑
(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y)

= (−0.5) · (−1) ·0.25+ (+0.5) · (−1) ·0.00+ (−0.5) ·0 ·0.25+·· ·+0.5 ·1 ·0.25
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Example of covariance calculation

Example

x−µX PY (y)−0.5 +0.5

y−µY

−1 0.25 0.00 0.25
0 0.25 0.25 0.50
+1 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

We can calculate the covariance Cov(X,Y) of RVs X,Y from its joint PMF PX,Y .

• Step 2: Calculate the weighted product of the deviations
(
x−µX

)(
y−µY

)
PX,Y (x,y) for every

(x,y) ∈X ×Y and take the sum.

In the above example, we have Cov(X,Y)=∑
(x,y)∈X×Y

(
x−µX

)(
y−µY

)
PX,Y (x,y)

= (−0.5) · (−1) ·0.25+ (+0.5) · (−1) ·0.00+ (−0.5) ·0 ·0.25+·· ·+0.5 ·1 ·0.25= 0.25.
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The variance is a special case of the covariance

The covariance between a random variable and itself is the variance of the random
variable. In other words:

Theorem

Cov(X,X)=V[X]. (32)

© SUZUKI, Atsushi 107



Covariance matrix

Definition

Let X1,X2, . . . ,Xm be RVs. The m×m real matrix
Cov(X1,X1) Cov(X1,X2) · · · (X1,Xm)
Cov(X2,X1) Cov(X2,X2) · · · (X2,Xm)

...
...

. . .
...

Cov(Xm,X1) Cov(Xm,X2) · · · (Xm,Xm)

 (33)

is called the covariance matrix of RVs X1,X2, . . . ,Xm.
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Example of the covariance matrix

Let X and Y be random variables whose joint PMF PX,Y are given by the following table.

x
PY (y)

0 +1

y
0 0.25 0.00 0.25
+1 0.25 0.25 0.50
+2 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

In the above example, Cov(X,X)=V[X]= 0.25, Cov(Y,Y)=V[Y]= 0.5, and
Cov(X,Y)=Cov(Y,X)= 0.25.

Hence, the covariance matrix is
[
Cov(X,X) Cov(X,Y)
Cov(Y,X) Cov(Y,Y)

]
=

[
0.25 0.25
0.25 0.5

]
.
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2 Multiple Random Variables

Correlation
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Correlation

The covariance considers the scale of each random variable, not only the relation
between them. Specifically, for a,b ∈R, we have that

Cov(aX,bY)= abCov(X,Y). (34)

This implies that just multiplying the random variables by some factors changes the value
of the correlation although the relation between aX and bY would be “qualitatively” the
same as that of X and Y.

To see the “qualitative” relation between X and Y, we normalize it by dividing it by the
covariance by the sum of the standard deviations of X and Y. The normalized covariance
is called the correlation coefficient of X and Y.
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Definition of the correlation coefficient

Definition (Correlation coefficient)

Let X and Y be random variables. The correlation coefficient corr[X,Y] between X and Y is
given by

corr[X,Y]B
Cov[X,Y]
σ[X]σ[Y]

. (35)

The correlation coefficient is often denoted by ρ.

As expected, for positive real numbers a and b, we have that

corr[aX,bY]= corr[X,Y]. (36)
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Example of the correlation coefficient

Let X and Y be random variables whose joint PMF PX,Y are given by the following table.

x
PY (y)

0 +1

y
0 0.25 0.00 0.25
+1 0.25 0.25 0.50
+2 0.00 0.25 0.25

PX (x) 0.50 0.50

Table: The joint PMF PX,Y . The RVs X and Y have a positive covariance.

In the above example, Cov(X,X)=V[X]= 0.25, Cov(Y,Y)=V[Y]= 0.5, and
Cov(X,Y)=Cov(Y,X)= 0.25.

Hence, the correlation coefficient between X and Y is corr(X,Y)= 0.25p
0.25

p
0.5

= 1p
2
.
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Correlation coefficient examples

Figure: ρ = 1.0 Figure: ρ = 0.0 Figure: ρ = 0.0 Figure: ρ =−1.0

Figure: ρ = 0.735 Figure: ρ = 0.385 Figure: ρ =−0.385 Figure: ρ =−0.735
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Independence implies no-correlation

Theorem

Let random variables X and Y be mutually independent. Then the covariance Cov(X,Y) and the
correlation corr[X,Y] are zero.

Note: the converse of the above theorem is FALSE (see the next slide).
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No correlation does NOT imply independence!

Example

Let X and Y be random variables whose joint PMF PX,Y are given by the following table.

x PY (y)−1 +1

y
−1 0.0 0.25 0.25
0 0.5 0.0 0.5
+1 0.0 0.25 0.25

PX (x) 0.5 0.5

Table: The joint PMF PX,Y . The RVs X and Y are uncorrelated but mutually independent.

Then, the covariance Cov(X,Y) and the correlation corr[X,Y] are zero. However, X and Y are not
independent. For example, PX,Y (−1,−1),PX (−1)PY (−1). The LHS is 0.0, while the RHS is
0.5×0.25= 0.125.

© SUZUKI, Atsushi 116



No correlation does NOT imply independence!

Example

Let X and Y be random variables whose joint PMF PX,Y are given by the following table.

x PY (y)−1 +1

y
−1 0.0 0.25 0.25
0 0.5 0.0 0.5
+1 0.0 0.25 0.25

PX (x) 0.5 0.5

Table: The joint PMF PX,Y . The RVs X and Y are uncorrelated but mutually independent.

Indeed, we cannot say Y increases as X increases since the expectation of Y is invariant when X.
Hence, the correlation is zero. On the other hand, the variance of Y is 0 when X =−1 but it is
non-zero if X =+1, hence X has some information about Y. These are intuitive explanations of
zero correlation and non-independence of X and Y.
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Correlation , Causality

If two random variables X and Y have a correlation, i.e., corr[X,Y], 0, you might expect
that X is the cause of Y.

However, there are many possibilities behind the correlation, e.g.,

1. X is a cause of Y.

2. Y is a cause of X.

3. There exists a random variable Z that causes the both X and Y.

4. (When we estimate the correlation coefficient) There is no relation between X and Y
but our estimation of the correlation coefficient is non-zero by estimation errors.

Hence, we cannot conclude that X is a cause of Y just by corr[X,Y], 0.
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2 Multiple Random Variables

Exercises
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Exercise (Joint PMF)

Consider two discrete random variables X and Y with supports X = {0,1,2,3} and Y = {0,1,2},
respectively. Their joint probability mass function (joint PMF) PX,Y is given by the following table:

PX,Y (x,y) x= 0 x= 1 x= 2 x= 3
y= 0 0.08 0.02 0.04 0.06
y= 1 0.20 0.05 0.10 0.15
y= 2 0.12 0.03 0.06 0.09

For example, the value 0.09 located in the column under x= 3 and in the row for y= 2 means
PX,Y (3,2)= 0.09. Answer the following questions:

(1) Calculate the marginal PMFs PX and PY .
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Exercise (Joint PMF)

Consider two discrete random variables X and Y with supports X = {0,1,2,3} and Y = {0,1,2},
respectively. Their joint probability mass function (joint PMF) PX,Y is given by the following table:

PX,Y (x,y) x= 0 x= 1 x= 2 x= 3
y= 0 0.08 0.02 0.04 0.06
y= 1 0.20 0.05 0.10 0.15
y= 2 0.12 0.03 0.06 0.09

For example, the value 0.09 located in the column under x= 3 and in the row for y= 2 means
PX,Y (3,2)= 0.09. Answer the following questions:

(2) Let the conditional probability mass function (PMF) of X given Y and that of Y given X be
denoted as PX|Y and PY|X , respectively. PX|Y (x|y) represents the probability that X = x given the
condition Y = y. Calculate the values of PX|Y (x|2) for all x ∈X and PY|X (y|1) for all y ∈Y .
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Exercise (Joint PMF)

Consider two discrete random variables X and Y with supports X = {0,1,2,3} and Y = {0,1,2},
respectively. Their joint probability mass function (joint PMF) PX,Y is given by the following table:

PX,Y (x,y) x= 0 x= 1 x= 2 x= 3
y= 0 0.08 0.02 0.04 0.06
y= 1 0.20 0.05 0.10 0.15
y= 2 0.12 0.03 0.06 0.09

For example, the value 0.09 located in the column under x= 3 and in the row for y= 2 means
PX,Y (3,2)= 0.09. Answer the following questions:

(3) Determine whether the random variables X and Y are mutually independent or not.
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Example answer:

(1) The marginal probability mass function (PMF) PX for X is defined for each x in X as
PX (x) :=Pr(X = x), which is the sum of the corresponding joint PMF values. Specifically,
PX (x) :=Pr(X = x)=∑

y∈Y Pr(X = x∧Y = y)=∑
y∈Y PX,Y (x,y). Similarly, the marginal PMF

PY for Y is defined for each y in Y as PY (y) :=Pr(Y = y), given by PY (y)=∑
x∈X PX,Y (x,y).

In this problem:
PX (0)=PX,Y (0,0)+PX,Y (0,1)+PX,Y (0,2)= 0.08+0.20+0.12= 0.40,
PX (1)=PX,Y (1,0)+PX,Y (1,1)+PX,Y (1,2)= 0.02+0.05+0.03= 0.10,
PX (2)=PX,Y (2,0)+PX,Y (2,1)+PX,Y (2,2)= 0.04+0.10+0.06= 0.20,
PX (3)=PX,Y (3,0)+PX,Y (3,1)+PX,Y (3,2)= 0.06+0.15+0.09= 0.30,
PY (0)=PX,Y (0,0)+PX,Y (1,0)+PX,Y (2,0)+PX,Y (3,0)= 0.08+0.02+0.04+0.06= 0.20,
PY (1)=PX,Y (0,1)+PX,Y (1,1)+PX,Y (2,1)+PX,Y (3,1)= 0.20+0.05+0.10+0.15= 0.50,
PY (2)=PX,Y (0,2)+PX,Y (1,2)+PX,Y (2,2)+PX,Y (3,2)= 0.12+0.03+0.06+0.09= 0.30.
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Example answer:

(2) The value of the conditional PMF PX|Y , when Y is given, is obtained by normalizing
the corresponding joint PMF values such that the total sums to 1. Specifically, for each x
in X and y in Y , PX|Y (x|y)= PX,Y (x,y)

PY (y) . Similarly, the value of the conditional PMF PX|Y is
given by normalizing the corresponding joint PMF values. Specifically, for each x in X

and y in Y , PX|Y (x|y)= PX,Y (x,y)
PY (y) .

In this problem:
PX|Y (0|2)= PX,Y (0,2)

PY (2) = 0.12
0.30 = 0.40,

PX|Y (1|2)= PX,Y (1,2)
PY (2) = 0.03

0.30 = 0.10,

PX|Y (2|2)= PX,Y (2,2)
PY (2) = 0.06

0.30 = 0.20,

PX|Y (3|2)= PX,Y (3,2)
PY (2) = 0.09

0.30 = 0.30,

PY|X (0|1)= PX,Y (1,0)
PX (1) = 0.02

0.10 = 0.20,

PY|X (1|1)= PX,Y (1,1)
PX (1) = 0.05

0.10 = 0.50,

PY|X (2|1)= PX,Y (1,2)
PX (1) = 0.03

0.10 = 0.30.
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Example answer:

(3) Generally, for discrete random variables X and Y with supports X and Y , and their
respective marginal PMFs PX and PY , along with a given joint PMF PX,Y , a necessary
and sufficient condition for X and Y to be mutually independent is that for any
(x,y) ∈X ×Y , PX,Y (x,y)=PX (x)PY (y) must hold. Thus, verifying that
PX,Y (x,y)=PX (x)PY (y) for all pairs (x,y) confirms that X and Y are mutually independent.
Conversely, if there exists any pair (x,y) for which PX,Y (x,y),PX (x)PY (y), then X and Y
are not independent.

In this case, all pairs (x,y) in X ×Y satisfy PX,Y (x,y)=PX (x)PY (y). For instance,
PX,Y (1,2)= 0.03, which matches PX (1)PY (2)= 0.10 ·0.30, and the same holds true for all
pairs (x,y) in X ×Y . Therefore, the random variables X and Y are mutually independent.
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Exercise (Covariance and Correlation Coefficient)

Consider two discrete random variables X and Y with supports X = {0,1} and Y = {0,1,2}
respectively. The joint probability mass function (joint PMF) PX,Y is given by the following table:

PX,Y (x,y) x= 0 x= 1
y= 0 0.25 0.00
y= 1 0.25 0.25
y= 2 0.00 0.25

Evaluate the expected values of X and Y, denoted by µX and µY respectively, the covariances
Cov(X,X), Cov(X,Y), and Cov(Y,Y), and the correlation coefficient between X and Y, denoted by
ρX,Y .
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Example answer:

For this problem, the marginal probability mass functions PX and PY for X and Y
respectively are given by

x 0 1
PX (x) 0.5 0.5

and

y 0 1 2
PY (y) 0.25 0.5 0.25

Thus, µX = 0 ·0.5+1 ·0.5= 0.5, µY = 0 ·0.25+1 ·0.5+2 ·0.25= 1. The covariance
Cov(X,X) is equal to X ’s variance σ2

X =∑
x∈X (x−µX )2PX (x)=∑

x∈X x2PX (x)− (µX )2.
Therefore, in this problem, Cov(X,X)= 02 ·0.5+12 ·0.5−0.52 = 0.25. Similarly, for Y,
Cov(Y,Y)= 02 ·0.25+12 ·0.5+22 ·0.25−12 = 0.5.
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Example answer (continued):

The covariance between X and Y, Cov(X,Y), can be calculated using the joint probability
mass function PX,Y , where
Cov(X,Y)=∑

(x,y)∈X×Y (x−µX )(y−µY )PX,Y (x,y)=∑
(x,y)∈X×Y xyPX,Y (x,y)−µXµY . For this

problem,
Cov(X,Y)= 0 ·0 ·0.25+0 ·1 ·0.25+0 ·2 ·0.00+1 ·0 ·0.00+1 ·1 ·0.25+1 ·2 ·0.25−0.5 ·1= 0.25.

The correlation coefficient ρX,Y is given by Cov(X,Y)√
σ2

X

√
σ2

Y

, yielding

ρX,Y = 0.25p
0.25

p
0.5

= 1p
2
≈ 1

1.414 ≈ 0.707.
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Exercise (Correlation and independence)

Consider discrete random variables X and Y, both with expectation and variance. Which of the
following statements is correct? Select one option.

• The correlation coefficient between X and Y being 0 is a necessary and sufficient condition
for X and Y to be independent.

• The correlation coefficient between X and Y being 0 is a necessary condition for X and Y to
be independent, but not a sufficient condition.

• The correlation coefficient between X and Y being 0 is a sufficient condition for X and Y to
be independent, but not a necessary condition.

• The correlation coefficient between X and Y being 0 is neither a necessary condition nor a
sufficient condition for X and Y to be independent.

Note: For conditions P, Q, if P =⇒ Q, meaning "if P, then Q" holds, then P is called a sufficient
condition for Q, and Q is called a necessary condition for P.
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Example answer:

First, let’s clarify the definitions of the correlation coefficient and independence for
discrete random variables. For discrete random variables X and Y, let µX := E[X] and
µY := E[Y] be the expected values of X and Y respectively, and σ2

X := E[(X −µX )2] and
σ2

Y := E[(Y −µY )2] be the variances of X and Y respectively. The covariance of X and Y,
Cov(X,Y), is defined as E[(X −µX )(Y −µY )]. The correlation coefficient ρX,Y is then
defined as ρX,Y := Cov(X,Y)√

σ2
X

√
σ2

Y

.

Furthermore, let PX,Y (x,y) :=Pr(X = x∧Y = y) be the joint probability mass function and
PX (x) :=Pr(X = x) and PY (y) :=Pr(Y = y) be the marginal probability mass functions for X
and Y respectively. Independence between X and Y is defined as, for any x and y,
PX,Y (x,y)=PX (x)PY (y) holding true.

© SUZUKI, Atsushi 127



Example answer (continued):

In this problem, the statement "If the correlation coefficient between X and Y is 0, then X
and Y are independent" does not hold. For example, in a case where
Pr(X = 0,Y =−1)=Pr(X = 0,Y =+1)= 0.25,Pr(X = 1,Y = 0)= 0.5, having a correlation
coefficient of 0 does not imply that X and Y are independent. Therefore, the correlation
coefficient being 0 is not a sufficient condition for X and Y to be independent.

On the other hand, if X and Y are independent, then their correlation coefficient is always
0. This can be proved as follows: For discrete random variables X and Y with supports
X and Y respectively, let their expected values be µX and µY , and their joint probability
mass function be denoted by PX,Y . Then, the covariance can be expressed as
Cov(X,Y)=∑

x∈X
∑

y∈Y xyPX,Y (x,y)−µXµY . If X and Y are independent, then it always
holds that PX,Y (x,y)=PX (x)PY (y), so the first term becomes∑

x∈X
∑

y∈Y xyPX,Y (x,y)=∑
x∈X

∑
y∈Y xPX (x)yPY (y)=∑

x∈X xPX (x)
∑

y∈Y yPY (y)=µXµY .
Therefore, it follows that Cov(X,Y)=µXµY −µXµY = 0. Thus, the correlation coefficient
being 0 is a necessary condition for X and Y to be independent.
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Exercise (Mutual independence and pairwise independence)

For discrete random variables X and Y, let PX,Y (x,y) :=Pr(X = x∧Y = y) be the joint probability
mass function, and PX (x) :=Pr(X = x) and PY (y) :=Pr(Y = y) be the marginal probability mass
functions for X and Y respectively. We say that X and Y are (mutually) independent if for any x
and y, PX,Y (x,y)=PX (x)PY (y).
Additionally, for discrete random variables X, Y, and Z, let PX,Y,Z(x,y,z) :=Pr(X = x∧Y = y∧Z= z)
be the joint probability mass function. We say that X, Y, and Z are mutually independent if for any
x, y, and z, PX,Y,Z(x,y,z)=PX (x)PY (y)PZ(z). Consider the following two conditions:
A: "X and Y are independent, and Y and Z are independent, and Z and X are independent."
B: "X, Y, and Z are mutually independent."
Is Condition A sufficient or necessary condition of Condition B?
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Example answer:

Let’s revisit the definition of independence for discrete random variables. For discrete
random variables X and Y, let PX,Y (x,y) :=Pr(X = x∧Y = y) be the joint probability mass
function, and PX (x) :=Pr(X = x) and PY (y) :=Pr(Y = y) be the marginal probability mass
functions for X and Y respectively. We say that X and Y are (mutually) independent if for
any x and y, PX,Y (x,y)=PX (x)PY (y).
Additionally, for discrete random variables X, Y, and Z, let
PX,Y,Z(x,y,z) :=Pr(X = x∧Y = y∧Z= z) be the joint probability mass function. We say that
X, Y, and Z are mutually independent if for any x, y, and z, PX,Y,Z(x,y,z)=PX (x)PY (y)PZ(z).
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Example answer (continued):

In the case of the question, "X and Y are independent, and Y and Z are independent,
and Z and X are independent" does not necessarily imply that "X, Y, and Z are mutually
independent". For instance, suppose that X and Y are independent, and
Pr(X = 0)=Pr(X = 1)=Pr(Y = 0)=Pr(Y = 1)= 0.5, like two independent ideal coin
tosses, and Z is a random variable dependent on X and Y determined by

Z=
{

0 if X =Y,
1 if X ,Y.

The joint PMF PX,Y,Z(x,y,z) is given by:

PX,Y,Z(x,y,0) x= 0 x= 1
y= 0 0.25 0.00
y= 1 0.00 0.25

PX,Y,Z(x,y,1) x= 0 x= 1
y= 0 0.00 0.25
y= 1 0.25 0.00

Hence, (partially) marginal PMFs PY,Z and PZ,X are given by.

PX,Y (x,y) x= 0 x= 1
y= 0 0.25 0.25
y= 1 0.25 0.25

PY,Z(y,z) y= 0 y= 1
z= 0 0.25 0.25
z= 1 0.25 0.25

PZ,X (z,x) z= 0 z= 1
x= 0 0.25 0.25
x= 1 0.25 0.25
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Example answer (continued):

In this example, the marginal PMF PZ is given by
PZ(0)= ∑

x=0,1

∑
y=0,1

PX,Y,Z(x,y,0)= 0.5,PZ(1)= ∑
x=0,1

∑
y=0,1

PX,Y,Z(x,y,1)= 0.5. Since

PX,Y (x,y)=PX (x)PY (y), PY,Z(y,z)=PY (y)PZ(z), and PZ,X (z,x)=PZ(z)PX (x) hold for all
x,y,z, X and Y are independent, and Y and Z are independent, and Z and X are
independent.

On the other hand, we can see that, for example, PX,Y,Z(0,0,0),PX (0)PY (0)PZ(0), where
the LHS is 0.25 but the RHS is 0.125. Hence, X, Y, and Z are not mutually independent.

To wrap up, "X and Y are independent, and Y and Z are independent, and Z and X are
independent" holds, but "X, Y, and Z are mutually independent" does not. Therefore, the
condition "X and Y are independent, and Y and Z are independent, and Z and X are
independent" is not sufficient for "X, Y, and Z being mutually independent".
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Example answer (continued):

However, if "X, Y, and Z are mutually independent", then "X and Y are independent, and
Y and Z are independent, and Z and X are independent" always holds. Specifically, if X,
Y, and Z are mutually independent, i.e., if PX,Y,Z(x,y,z)=PX (x)PY (y)PZ(z) holds, by
taking the sum over z, we have that PX,Y (x,y)=PX (x)PY (y), which indicates the
independence of X and Y. We can also prove the independence of Y and Z and that of Z
and X, likewise. Thus, the condition "X and Y are independent, and Y and Z are
independent, and Z and X are independent" is necessary for the condition "X, Y, and Z
are mutually independent."
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Outline

3 Continuous Random Variables

Introduction: why are continuous random variables less trivial?
Probability density function
Area, integration, and properties of PDF.
Calculating integral
Summary statistics of continuous RV and integral
Jointly continuous random variables and multiple integral
Relation among jointly continuous RVs
Exercises

© SUZUKI, Atsushi 131



Outline

3 Continuous Random Variables

Introduction: why are continuous random variables less trivial?
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Continuous random variables in real AI applications

A discrete RV can take only limited values. However, many real-world phenomena are
represented as random variables which can take any real value in a continuous section.

• Inflation rate (economics),

• Position of a vehicle,

• The brightness of scenery,

• The intensity of an acoustic signal,

• Density of air pollution.

Hence, when we want to analyze those phenomena using probability theory, we cannot
always use mathematical tools to handle discrete RVs.

For example, those random variables typically have no probability mass function
(PMF).
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A random variable may not have a PMF.

Consider a simple random variable uniformly distributed in [0,1]. Here Pr(0≤X ≤ 1)= 1.

This random variable have nowhere probability mass, i.e., Pr(X = x)= 0. for any X ∈R.

Proof.

Since its support is [0,1], it is trivial that Pr(X = x)= 0 for x, [0,1]. For x ∈ [0,1], assume, for the
sake of contradiction, that Pr(X = x)= ϵ, where ϵ> 0. From its uniformity, if Pr(X = x)= ϵ holds for
one value x ∈ [0,1], then it holds for all x ∈ [0,1]. Hence, if A⊂ [0,1] and A has at least N elements,
Pr(X ∈A)≤Nϵ. However, there are an infinite number of real numbers in [0,1], so Pr(X ∈ [0,1]) is
infinity. It contradicts Pr(X ∈ [0,1])= 1. □
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A random variable may not have a PMF.

Consider a simple random variable uniformly distributed in [0,1]. Here Pr(0≤X ≤ 1)= 1.

This random variable have nowhere probability mass, i.e., Pr(X = x)= 0. for any X ∈R.

Other random variables whose support is a section in the real line have the same
problem. Hence, we need another way to represent a random variable.

Fortunately, any univariate random variable has a cumulative distribution function (CDF)
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Example of CDF for a non-discrete RV

The CDF of a random variable X uniformly distributed in [0,1] is:

x

y

+1.0

+1.0

O

y=FX (x)

FX (x)=


0 if x≤ 0,
x if 0≤ x≤ 1,
1 if x≥ 1.

(37)
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Example of CDF for a non-discrete RV

The CDF of a random variable X uniformly distributed in [0,1] is:

x

y

+0.2

FX (+0.2)=+0.2

+0.6

FX (+0.6)=+0.6

O

y=FX (x)

Using the CDF, we can calculate the probability of various events. For example,

Pr(0.2<X ≤ 0.6)=Pr(X ≤ 0.6)−Pr(X ≤ 0.2)

=FX (0.6)−FX (0.2)
= 0.6−0.2= 0.4.

(37)
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Example of CDF for a non-discrete RV

The CDF of a random variable X uniformly distributed in [0,1] is:

x

y

+0.2

FX (+0.2)=+0.2

+1.4

FX (+1.4)=+1.0

O

y=FX (x)

Using the CDF, we can calculate the probability of various events. For example,

Pr(0.2<X ≤ 1.4)=Pr(X ≤ 1.4)−Pr(X ≤ 0.2)

=FX (1.4)−FX (0.2)
= 1.0−0.2= 0.8.

(37)
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Example of CDF for a non-discrete RV

The CDF of a random variable X uniformly distributed in [0,1] is:

x

y

+0.2

FX (+0.2)=+0.2

+0.7

FX (+0.7)=+0.7

O

y=FX (x)

Using the CDF, we can calculate the probability of various events. For example,

Pr(0.2≤X ≤ 0.7)=Pr(X ≤ 0.7)− lim
x↗0.2

Pr(x)

=FX (0.7)− lim
x↗0.2

FX (x)

= 0.7−0.2= 0.5.

(37)
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Why are we not satisfied with the CDF?

However, the CDF is not always welcomed. It is because

• The CDF is not intuitive. At one glance, we do not know around which value the
random variable tends to take a value.

• The CDF can be extremely complex even for a practically important distribution.

Although there exists no PMF for a continuous RV in general, we want to indicate which
values the RV tends to take frequently as the PMF does for a discrete RV.

The probability density function (PDF) achieves this objective.
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Learning outcomes

By the end of this section, you should be able to:

• Explain what a probability density function represents,

• Explain the relation between the probability density function and cumulative
distribution function,

• Calculate the probability of an event using the integral and the probability density
function, and

• Calculate summary statistics of continuous random variables.
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Notation: sections

In the following, R, R≥0, and R>0 are the sets of real numbers, nonnegative real numbers,
and positive real numbers, respectively.

Let a and b be real values. By [a,b], (a,b), we denote the closed and open sections
defined by

• [a,b]= {x ∈R|a≤ x≤ b},

• (a,b)= {x ∈R|a< x< b},

respectively. Likewise, by (a,b] and [a,b), we denote the semi-open sets defined by

• (a,b]= {x ∈R|a< x≤ b},

• [a,b)= {x ∈R|a≤ x< b},
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Notation: Napier’s constant and the exponential function

The real number constant e, called Napier’s constant or Euler’s number , is defined by

eB lim
n→+∞

(
1+ 1

n

)n
. Note that e= 2.718281828... and is the only real value that satisfies

d
dxex = ex.

We define the (natural) exponential function exp :R→R>0 by exp(x)= ex.
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Outline

3 Continuous Random Variables

Probability density function
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Idea of the probability density function

As we have seen in the case of the uniform distribution in the section [0,1], the probability
Pr(X = c) might be zero for a real value c in many cases. In this case, we cannot say
which values the RV tend to take more frequently than others.

Hence, we evaluate the probability of the RV taking a value in a section. For example,
instead of evaluating Pr(X = c), we evaluate the probability Pr(a<X ≤ b) for real values
a,b around c such that a< b. If the probability is high and the section length b−a is short,
we can say that the RV X takes a value around c frequently.

So, we can regard the probability per the section length as the density of the probability
distribution of the RV X around the section. A high density around a value c indicates that
the X tends to take a value around c.

Based on the above idea, we can formulate the probability density function (PDF) from
the cumulative distribution function (CDF) as follows.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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CDF to the density.
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Figure: The density at the section [0.50,1.00] is larger, reflecting the steeper slope of the graph of
FX .
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CDF to the density.
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CDF to the density.
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Figure: Using the piece-wise density, we can calculate Pr(a<X ≤ b) if each of a and b is an end
point of a section.
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© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

a b
FX (a)

FX (b) FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

x

y

O a b

Pr(a<X ≤ b)

y= ∆FX
∆x

Figure: Actually, the probability Pr(a<X ≤ b)=FX (b)−FX (a) is the area under the piece-wise
density graph.

© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

x

y

O

y= ∆FX
∆x

Figure: If the sections are shorter, we can evaluate Pr(a<X ≤ b) for more pairs of a and b.© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

a b
FX (a)

FX (b)
FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

x

y

O a b

Pr(a<X ≤ b)

y= ∆FX
∆x

Figure: If the sections are shorter, we can evaluate Pr(a<X ≤ b) for more pairs of a and b.© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

x

y

O

y= pX (x)= dFX (x)
dx

Figure: If we consider infinitely short sections, the density ∆FX
∆x converges to the derivative dFX

dx .© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

a b
FX (a)

FX (b)

FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

x

y

O a b

FX (b)−FX (a)

y= pX (x)= dFX (x)
dx

Figure: Actually, the probability Pr(a<X ≤ b)=FX (b)−FX (a) is the area under the graph of dFX
dx .© SUZUKI, Atsushi 142



CDF to the density.

x

y

O

y=FX (x)

a b
FX (a)

FX (b)

FX

∆FX
∆x

The
slope

ofthe
discretized

graph

∆FX
∆x

FX

Th
e

ar
ea

un
de

rt
he

gr
ap

h

FX

dFX
dx

D
ifferentiation

dFX
dx

FX
Th

e
ar

ea
un

de
rt

he
gr

ap
h

x

y

O a b

Pr(a<X ≤ b)

y= pX (x)= dFX (x)
dx

Figure: Actually, the probability Pr(a<X ≤ b)=FX (b)−FX (a) is the area under the graph of dFX
dx .© SUZUKI, Atsushi 142



Probability density function (PDF)

Definition (Probability density function and continuous random variable)

Let X be a RV. A function pX :R→R≥0 is called a probability density function (PDF) of X if the
probability Pr(a<X ≤ b) equals to the area bounded by the graph of y= pX (x) and y= 0 between
x= a and x= b for all a and b such that a≤ b.
If a RV has at least one PDF, the RV is called a continuous random variable.

x

y

Oa b

y= pX (x)

Figure: If pX is a PDF of X, the probability Pr(a<X ≤ b) is given by the area under the PDF in the
domain (a,b].
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A continuous RV has nowhere a “mass.”

The area under a curve in a zero-length section is zero. Hence, if a RV is continuous, it
has no probability mass anywhere. That is,

Theorem

If X is a continuous RV, the probability Pr(X = c) is zero for any c ∈R.

Hence, when we discuss a continuous RV, we do not need to discuss whether or not a
section includes the endpoints. That is,

Corollary

Let X be a continuous RV and a and b be real values such that a< b. Then we have,

Pr(a≤X ≤ b)=Pr(a<X ≤ b)=Pr(a≤X < b)=Pr(a<X < b). (38)

Hence, we can replace a<X ≤ b with a≤X ≤ b or another in the definition of the PDF6.
6To see this strictly, we need Carathéodory’s extension theorem on semiring of sets
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Note: the end-points are not ignorable for a discrete RV.

A discrete RV has a probability mass on any value in its support. Hence, for example,
Pr(a≤X ≤ b),Pr(a<X ≤ b) in general.

For example, if X is the value when we roll an ideal six-sided dice,
Pr(3≤X ≤ 6)= 4

6 ,Pr(3<X ≤ 6)= 3
6 .
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CDF and PDF

Assume that the CDF is differentiable at all the points on the real number line expect for
finite points. As we can see in the construction of the PDF from the CDF, we can get the
PDF by differentiating the CDF.

In practice, we usually know the PDF in advance but the CDF is unknown. Hence, we
need to understand how to evaluate the area bounded by the graph of a general PDF.
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Outline

3 Continuous Random Variables

Area, integration, and properties of PDF.
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How to mathematically calculate the area under the curve?

Let X be a continuous RV and pX be its PDF. Recall that the probability Pr(a≤X ≤ b) is
given by the area under the graph of PDF pX in the section [a,b].

Hence, we need a mathematical tool to evaluate the area under the curve of a function in
general.

Integration is the area to discuss the area under the graph of a function, (or the volume
under the graph of a function in higher-dimensional space). We will learn it in the
following.
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Definite Integral

Suppose that a≤ b.

The (signed) area bounded by the graph of y= f (x) and y= 0 between x= a and x= b is

called the definite integral of f between a and b, which is denoted by
∫b

a
f (x)dx.

We also define
∫a

b
f (x)dxB−

∫b

a
f (x)dx.

x

y

Oa b

y= f (x)

Figure: The definite integral is the area bounded by the graph of the function.
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Definite Integral: When the function takes negative values

Areas bounded by the graph taking negative values are counted as negative values.

x

y

O
a b

y= f (x)

Figure: Areas bounded by the graph taking negative values are counted as negative values.
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Figure: Areas bounded by the graph taking negative values are counted as negative values.
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Any continuous RV has a nonnegative PDF

Assume that X is a continuous RV let pX be a PDF of X. The probability

Pr(a<X ≤ b)=
∫b

a
pX (x)dx is always nonnegative, so we expect the PDF pX to be a

nonnegative function.

Strictly speaking, a PDF of a RV is not unique, since the area bounded by the graph does
not change even if we change the value of the function at finite or countable points7.

Nevertheless, if a RV has a PDF, we can assume that it is a nonnegative function without
loss of generality.

Theorem

Let X be a continuous RV, i.e., there is a PDF of X. Then, there exists a nonegative PDF of X,
i.e, a PDF pX such that pX (x)≥ 0 at any x ∈R.

In the following, we always assume that a PDF is nonnegative.
7Strictly speaking, at points in a set with measurement zero.
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Probability of a RV being in a complicated shape

If we want to calculate the probability Pr(X ∈A), where A⊂R has a complicated shape,
we can calculate it using the sum rule.

Specifically, suppose that we have a decomposition A=
n⋃

i=1
(ai,bi], where

(ai,bi]∩ (aj,bj]=;. Then, we have that

Pr(X ∈A)=
n∑

i=1
Pr(ai <X ≤ bi). (39)

If X is a continuous RV and pX is its PDF, the above value equals
n∑

i=1

∫bi

ai

pX (x)dx.

The same discussion holds even if the decomposition includes open sections like (ai,bi)
or closed sections like [aj,bj].

Note that the above calculation is not always correct if the decomposition includes an
uncountably infinite number of sections.
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Probability of a RV being in an infinite length section

If we need to evaluate the probability Pr(a<X), what we do is consider Pr(a<X ≤ b) for
an infinitely large b. Hence, we have that Pr(a<X)= limb→+∞Pr(a<X ≤ b). The reverse
holds for Pr(X ≤ b). In other words, we can evaluate those probabilities by taking the limit
of a definite integral as follows.

Theorem

Let X be a continuous RV, whose PDF is pX , and a and b be real values. Then,

• Pr(a<X)=Pr(a≤X)= lim
b→+∞

∫b

a
pX (x)dx,

• Pr(X < b)=Pr(X ≤ b)= lim
a→−∞

∫b

a
pX (x)dx.
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The “sum” of the PDF is one.

The section (a,0] includes all the nonpositive numbers if a is infinitely small and the
section (0,b] includes all the positive numbers b is infinitely large. Since a continuous RV
X always takes a real value, the sum of the probabilities Pr(a<X ≤ 0)+Pr(0<X ≤ b) is 1
if a is infinitely small and b is infinitely large. Hence, the following always hold.

Theorem

Let X be a continuous RV whose PDF is pX . We have that

lim
a→−∞

∫0

a
pX (x)dx+ lim

b→+∞

∫b

0
pX (x)dx= 1 (40)

The above property is similar to a property of the probability mass function (PMF) of a
discrete RV. To see that, we will introduce the improper integral.
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Improper integral

As we have seen, we often want to calculate limits of the definite integral. We call them
improper integrals, and use special notations as follows.

Definition (Improper integrals)

Let f :R→R be a function and a and b be real values. We define the value
∫+∞

a
f (x)dx,∫b

−∞
f (x)dx, and

∫+∞

−∞
f (x)dx by the following.

•
∫+∞

a
f (x)dxB lim

b→+∞

∫b

a
f (x)dx,

•
∫b

−∞
f (x)dxB lim

a→−∞

∫b

a
f (x)dx,

•
∫+∞

−∞
f (x)dxB

∫0

−∞
f (x)dx+

∫+∞

0
f (x)dx.
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Interpretation of improper integrals

We can regard improper integrals
∫+∞

a
f (x)dx,

∫b

−∞
f (x)dx, and

∫+∞

−∞
f (x)dx as the signed

areas bounded by a graph of f in the section (a,+∞), (−∞,b), and (−∞,+∞),
respectively.
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Rewriting properties of the PDF using improper integrals

We can rewrite the properties of the PDF in previous slides as follows.

Theorem

Let X be a continuous RV, whose PDF is pX , and a and b be real values. Then,

• Pr(a<X)=Pr(a≤X)=
∫+∞

a
pX (x)dx,

• Pr(X < b)=Pr(X ≤ b)=
∫b

−∞
pX (x)dx,

•
∫+∞

−∞
pX (x)dx= 1.

The third property is similar to a property of the PMF:
∑

x∈X

PX (x)= 1, where X is a discrete

RV, X is its support and PX is its PMF.
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Properties of the definite integral

Let a,b,c be real numbers and f and g be functions of a real value.

•
∫a

b
f (x)dxB−

∫b

a
f (x)dx (by definition),

•
∫a

a
f (x)dx= 0 (The area is zero in a zero length section.).

•
∫c

a
f (x)dx+

∫b

c
f (x)dx=

∫b

a
f (x)dx (horizontal concatenation).
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Outline

3 Continuous Random Variables

Calculating integral
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Calculating definite integrals

Let X be a continuous RV and pX be its PDF. Since the probability Pr(a<X ≤ b) is given
by the definite integral

∫b
a p(x)dx, we need to know how to calculate definite integrals

to understand the behavior of the continuous RV X.

There are two directions to calculate definite integrals.

• Numerical integration by approximating the area by shapes of which we can
calculate the area easier.

• Analytical integration by conducting integration as the inverse operation of
differentiation.

In general, numerical integration methods8 can apply to a variety of cases but cause an
approximation error. The analytical integration methods can give us the exact value but
have limited applications. In practice, we combine them depending on the situation. In
this lecture, we focus on analytical methods. It also helps us learn numerical
integration.

8e.g., the trapezoidal rule, the Gauss-Legendre quadrature rule, the double exponential formula
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Basic idea of calculating an integral

When we constructed the probability density function (PDF) pX , we differentiated the

cumulative distribution function (CDF) FX . Specifically, pX (x)= d
dx

FX (x). Conversely, we

observed that the area
∫b

a
pX (x)dx under the graph of the PDF corresponds to the

difference FX (b)−FX (a).

To wrap up, to calculate the definite integral
∫b

a
pX (x)dx, we can use a function whose

derivative is pX .

According to the fundamental theorem of calculus (FTC), this relation between the
derivative and the definite integral applies to a general function. We can use this relation
to calculate a definite integral.
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Integral is the “inverse” of differentiation

Definition (Primitive function)

Let a and b be real numbers such that a< b and f : [a,b]→R. If F : [a,b]→R satisfies F′ = f , i.e.,
d
dx F(x)= f (x) for all x ∈ [a,b], then F is called a primitive function or an antiderivative function
of f .

Theorem (The fundamental theorem of calculus (FTC))

Let a and b be real numbers such that a< b and f : [a,b]→R be integrable. Suppose that there
exists a primitive function F : [a,b]→R of f , then we have that∫b

a
f (t)dt=F(b)−F(a). (41)

We often denote F(b)−F(a) by [F(x)]b
a.

According to the FTC, we can calculate an integral using a primitive function!
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Calculating the definite integral

To calculate the definite integral ∫b

a
f (x)dx , (42)

the following steps suffice.

• Step 1: Find a primitive (antiderivative) function F : [a,b]→R, which satisfies F′ = f .

• Step 2: Evaluate the value of [F(x)]b
aBF(b)−F(a).
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Examples of calculating a definite integral

Example

Let f (x)= x.

We can calculate the definite integral
∫5

−4
f (x)dx=

∫5

−4
xdx as follows.

• Step 1:

Find a primitive (antiderivative) function F, which satisfies F′ = f . In this example
case, we can use a function F(x)= 1

2 x2 as a primitive function since d
dx

1
2 x2 = x.

• Step 2:

Evaluate the value of [F(x)]5−4BF(5)−F(−4). In this example case,
F(5)−F(−4)= 1

2 (5)2 − 1
2 (−4)2 = 25

2 −8= 9
2 .

Hence, we have that ∫5

−4
f (x)dx= 9

2
. (43)
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F(5)−F(−4)= 1

2 (5)2 − 1
2 (−4)2 = 25

2 −8= 9
2 .

Hence, we have that ∫5

−4
f (x)dx= 9

2
. (43)
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A primitive function is not unique.

As we have seen, finding a primitive function is essential to calculate the definite integral.
Here, we must note that a primitive function is not unique.

If a function F1 : [a,b]→R is a primitive function of f : [a,b]→R, then F2 : [a,b]→R

defined by F2(x)=F1(x)+C is also a primitive function, where C ∈R is a constant.

Example

Both F1(x)= 1
2 x2 and F2(x)= 1

2 x2 +5 are primitive functions of f (x)= x.
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The primitive function is unique up to an additive constant.

A primitive function is not unique. However, it is unique up to an additive constant in
the following sense.

Theorem (The primitive function is unique up to an additive constant)

Let a and b be real values such that a< b. If both F1 : [a,b]→R and F2 : [a,b]→R are primitive
functions of f , the difference between F1 and F2 is a constant function. In other words, there
exists a constant C ∈R such that F2(x)−F1(x)=C.

To wrap up, if F is a primitive function of f , then, for any constant C, the function given by
F(x)+C is also a primitive function of f , and conversely, all the primitive functions are
written in this form. We write this fact as follows.∫

f (x)dx=F(x)+C, (44)

Here, the symbol
∫

f (x)dx in the LHS denotes all the primitive functions of f . Here, the
constant C in the RHS is called the constant of integration.
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Examples of primitive functions

Example

The function F(x)= 1
2 x2 is a primitive function of f (x)= x since F′(x)= f (x). Hence,∫

f (x)dx= 1
2

x2 +C. Here, C is the constant of integration.
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Note about the proof

We can prove the uniqueness of the primitive function up to an additive constant by the
mean value theorem.
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Indefinite integral

Let f be a function and a be a real value. The function defined by the following form is
called an indefinite integral of f .

∫x

a
f (t)dt . (45)

It is known that if f be continuous, then an indefinite integral is a primitive function of f .
Note that some literature use the term “indefinite integral” to refer to a primitive function
for this reason, while not all primitive functions are written in the above form.

© SUZUKI, Atsushi 169



Linearity of the antidifferentiation and integral

Since the derivation is a linear operator, the antidifferentiation, the operation to find a
primitive function, is linear as well in the following sense.

Theorem (Linearity of antidifferentiation)

Let f ,g :R→R be functions and F and G be the primitive functions of f and g, respectively. Also,
let α and β be real values.
Then, αF+βG is a primitive function of αf +βg.
In other words, ∫(

αf (x)+βg(x)
)
dx=α

∫
f (x)dx+β

∫
g(x)dx . (46)

We can easily prove the above by taking the derivatives of both sides9.

9Strictly speaking, we should consider the uniqueness of the primitive function up to an additive constant
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Linearity of the definite integral

By combining the linearity of the antidifferentiation and the FTC, we can immediately get
the linearity of the definite integral, which is a useful formula.

Corollary (Linearity of the definite integral)

Let f ,g :R→R be functions and a, b, α and β be real values. Then,∫b

a

(
αf (x)+βg(x)

)
dx=α

∫b

a
f (x)dx+β

∫b

a
g(x)dx . (47)

© SUZUKI, Atsushi 171



Example of the linearity of antidifferentiation

Example

In the following, C is the constant of integration.

•
∫(

cosx+x2)
dx=

∫
cosxdx+

∫
x2 dx= sinx+ 1

3
x3 +C. Hence,∫π

0

(
cosx+x2)

dx=
(
sinπ+ 1

3
π3

)
−

(
sin0+ 1

3
·03

)
= 1

3
π3.

•
∫

5exp(x)dx= 5
∫

exp(x)dx= 5exp(x)+C. Hence,∫3

1
5exp(x)dx= (5exp(3))− (5exp(1))= 5e(e2 −1).
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Finding the primitive function is not always easy.

To calculate the derivative, we had many useful formulae. Let f ,g :R→R be differentiable
functions, then, e.g.,

• (fg)′ = f ′g+ fg′ for the product,

• (g◦ f )′ = (
g′ ◦ f

)
f ′ for the composition.

Recall that the composition g◦ f is defined by (g◦ f )(x)= g(f (x)).

However, generally speaking, antidifferentiation is more difficult than differentiation.
Specifically, we have no formulae to find a primitive function of a general product or
composition like in differentiation. Nevertheless, we have some techniques to make such
calculation more feasible for some cases, called integration by parts and integration
by substitution.
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Integration by parts

Let f and g be real functions and F and G be those primitive functions. While we cannot
generally write the primitive function of the product fg only by F and G, the technique,
called integration by parts, based on the following equation might help.

∫
f (x)g(x)dx= f (x)G(x)−

∫
f ′(x)G(x)dx . (48)

Note that we assume that f is differentiable in the above.

By the above equation, we can find the primitive function of fg as long as we know that of
f ′G.

The proof of the above equation is easy if we differentiate the RHS.
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Integration by parts

Let f and g be real functions and F and G be those primitive functions. While we cannot
generally write the primitive function of the product fg only by F and G, the technique,
called integration by parts, based on the following equation might help.

∫
f (x)g(x)dx= f (x)G(x)−

∫
f ′(x)G(x)dx . (48)

Example

∫
xcos(x)dx= xsin(x)−

∫
(x)′ sin(x)dx

= xsin(x)−
∫

1 ·sin(x)dx

= xsin(x)− (−cosx)+C.

(49)
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Integration by parts

Let f and g be real functions and F and G be those primitive functions. While we cannot
generally write the primitive function of the product fg only by F and G, the technique,
called integration by parts, based on the following equation might help.

∫
f (x)g(x)dx= f (x)G(x)−

∫
f ′(x)G(x)dx . (48)

Example

∫
log(x)dx=

∫
log(x) ·1dx= log(x) ·x−

∫
(log(x))′ ·xdx

= log(x) ·x−
∫

1
x
·xdx

= x log(x)−x+C.

(49)
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Integration by substitution

Let f and g be real functions and assume f be differentiable. If the integrand includes the
composition g◦ f , we cannot generally write the primitive function only by the primitive
functions of f and g. However, we may find it by the following technique, called
integration by substitution.

Theorem (Integration by substitution for indefinite integral)

∫
g(f (t))f ′(t)dt=

∫
g(x)dx

∣∣∣∣
x=f (t)

, (50)

where the RHS means the function we obtain by substituting x= f (t) to a primitive function of g.

Both directions of the above equation are useful.
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integration by substitution.

Theorem (Integration by substitution for definite integral)

∫b

a
g(f (t))f ′(t)dt=

∫f (b)

f (a)
g(x)dx , (50)

where the RHS means the function we obtain by substituting x= f (t) for a primitive function of g.

Both directions of the above equation are useful.
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Why do we call it integration by substitution?

The previous page’s formula is called integration by substitution because the formula is
informally given by substituting x= f (t) as follows.∫b

a
g(f (t))f ′(t)dt=

∫t=b

t=a
g(f (t))

df (t)
dt

dt

=
∫t=b

t=a
g(x)

dx
dt

dt

=
∫t=b

t=a
g(x)dx

=
∫x=f (b)

x=f (a)
g(x)dx .

(51)

Note that the above discussion is mathematically inaccurate (especially where we used
dx
dt dt= dx). If we want to formally prove the formula, we should simply differentiate both
sides of the formula for indefinite integral.
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Examples of integration by substitution.

Recall the formula. ∫b

a
g(f (t))f ′(t)dt=

∫f (b)

f (a)
g(x)dx , (52)

Example (integration by substitution: from left to right)

∫+2

0
texp

(−t2)
dt=−1

2

∫+2

0
exp

(−t2) · (−2t)dt

=−1
2

∫+2

0
exp

(−t2) · (−t2)′
dt

=−1
2

∫−22

−02
exp(x)dx

=−1
2

[exp(x)]−22

−02 =−1
2

[exp(−4)−exp(0)]= 1
2

[1−exp(−4)].

(53)
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Examples of integration by substitution.

Recall the formula. ∫b

a
g(f (t))f ′(t)dt=

∫f (b)

f (a)
g(x)dx , (52)

Example (integration by substitution: from right to left)

∫1

0

√
1−x2 dx=

∫0

π
2

√
1−cos2(t)(cos(t))′dt since cos

(π
2

)
= 0,cos(0)= 1,

=
∫0

π
2

√
1−cos2(t)(−sin(t))dt

=
∫ π

2

0
sin2(t)dt=

∫ π
2

0

1−cos(2t)
2

dt=
[

1
2

t− 1
4

sin(2t)
] π

2

0
= 1

4
π.

(53)
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Example of definite integral calculation in probability theory

Example (Exponential distribution)

The distribution of a RV X is called the exponential distribution with mean µ if it has a PDF pX
given by

pX (x)B

{
0 if x< 0,
1
µ

exp
(
− x

µ

)
if x≥ 0.

(54)

For nonnegative numbers a and b, the probability Pr(a<X ≤ b) is given by

Pr(a<X ≤ b)=
∫b

a
pX (x)dx=

∫b

a

1
µ

exp
(
− x
µ

)
dx

=
[
−exp

(
− x
µ

)]b

a
= exp

(
−a
µ

)
−exp

(
−b
µ

)
.

(55)
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A primitive function of the product/composition is not easily found.

We know that the primitive functions of 1
x and sin, or exp and −x2. Indeed,∫

1
x

dx= log |x|+C,
∫

sinxdx=−cos+C,
∫(−x2)

dx=−1
3

x3 +C,
∫

exp(x)dx= exp(x)+C.

(56)
However, it is known that the primitive functions of 1

x sinx and exp
(−x2)

are not
elementary , although 1

x sinx and exp
(−x2)

themselves are elementary.

Here, we call a function elementary if we can write the function as a composition of finitely many

• algebraic functions, functions represented as a root of polynomial-function-coefficient
polynomial equations, including polynomial, rational functions and fractional powers, e.g.,
5x2 +x−3,

p
3x+5, 3x+1

−2x2+x+5 , etc.

• trigonometric functions, e.g., sinx, cosx etc.,

• exponential function expx,

• logarithmic function logx.
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A primitive function of the product/composition is not easily found.

We know that the primitive functions of 1
x and sin, or exp and −x2. Indeed,∫

1
x

dx= log |x|+C,
∫

sinxdx=−cos+C,
∫(−x2)

dx=−1
3

x3 +C,
∫

exp(x)dx= exp(x)+C.

(56)
However, it is known that the primitive functions of 1

x sinx and exp
(−x2)

are not
elementary , although 1

x sinx and exp
(−x2)

themselves are elementary.

Roughly speaking, most functions we can imagine without the inverse function and the
primitive function are elementary.

The fact that the primitive functions of 1
x sinx and exp

(−x2)
are not elementary means we

have no way to write those primitive functions.

From the computer science viewpoint, the above fact means that we cannot easily find the
exact value of the integrals of those functions. Some non-elementary primitive functions
might be implemented by some libraries if they are famous. If they are not implemented,
you might need to calculate the definite integral using a numerical method.
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A primitive function of the product/composition is not easily found.

We know that the primitive functions of 1
x and sin, or exp and −x2. Indeed,∫

1
x

dx= log |x|+C,
∫

sinxdx=−cos+C,
∫(−x2)

dx=−1
3

x3 +C,
∫

exp(x)dx= exp(x)+C.

(56)
However, it is known that the primitive functions of 1

x sinx and exp
(−x2)

are not
elementary , although 1

x sinx and exp
(−x2)

themselves are elementary.

In fact, these functions are important in many areas.

• The PDF of the normal distribution is proportional to exp
(−x2)

. The normal distribution is the
most important distribution in probability theory, owing to the central limit theorem.

• The sine cardinal function sinx
x appears in many application areas, including physics,

probability theory, signal processing, optics, etc., because it is the Fourier transform of the
rectangle function.
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Outline

3 Continuous Random Variables

Summary statistics of continuous RV and integral
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Expectation (mean) of a continuous random variable

The expectation of a continuous RV is defined similarly to that of a discrete RV.
Specifically, we get the definition for a continuous RV by replacing the PMF and the sum
with the PDF and the integration in the definition for a discrete RV.

Definition (Expectation of a continuous RV)

Let X be a continuous RV and pX be its probability density function (PDF). Then, the expectation
EX of X is defined by

EXB
∫+∞

−∞
xp(x)dx . (57)

Cf.) The expectation of a discrete RV X is given by
∑

x∈X

xPX (x), where PX is the

probability mass function.
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Example: expectation of exponential distribution

Example (Expectation of the exponential distribution)

The PDF pX of a RV X following the exponential distribution with mean µ is given by

pX (x)B

{
0 if x< 0,
1
µ

exp
(
− x

µ

)
if x≥ 0.

(58)

Noting that the density is zero for the negative domain, we can calculate the expectation EX using
integration by parts as follows.

EX =
∫+∞

−∞
xpX (x)dx=

∫+∞

0
x · 1

µ
exp

(
− x
µ

)
dx=

∫+∞

0
x
(
−exp

(
− x
µ

))′
dx

=
[
x ·

(
−exp

(
− x
µ

))]+∞
0

−
∫+∞

0
(x)′ ·

(
−exp

(
− x
µ

))
dx=−

∫+∞

0

(
−exp

(
− x
µ

))
dx

=−
[
µexp

(
− x
µ

)]+∞
0

=µ.

(59)
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The expectation of a function of a continuous RV

A function of a discrete RV is always a discrete RV. However, a function of a continuous
RV is not always a continuous RV.

Even though a function of a continuous RV may not be a continuous RV, its expectation
can always be calculated by the following formula, which is similar to the formula for a
discrete RV.

Theorem

Let X be a continuous RV and its PDF be pX . Also, let f :R→R be a real-valued function taking a
real value as an input. The expectation E f (X) of the random variable X is given as follows.

E f (X)=
∫+∞

−∞
f (x)pX (x)dx . (60)

Cf.) For a discrete RV whose support and PMF are X and PX , respectively, we have that
E f (X)=

∑
x∈X

f (x)PX (x).
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The expectation of a function of a continuous RV

A function of a discrete RV is always a discrete RV. However, a function of a continuous
RV is not always a continuous RV.

For example, if f is the sign function defined by

f (x)B


−1 if x< 0,
0 if x= 0,
+1 if x> 0,

(60)

and X is a continuous RV whose PDF pX is given by

pX (x)=
{
+1 if −1

2 ≤ x≤+1
2 ,

0 otherwise.
(61)

Then, the RV f (X) takes values −1 and +1 with equal probability. In particular, it is a
discrete RV, whose support is {−1,+1}.

Even though a function of a continuous RV may not be a continuous RV, its expectation
can always be calculated by the following formula, which is similar to the formula for a
discrete RV.

Theorem

Let X be a continuous RV and its PDF be pX . Also, let f :R→R be a real-valued function taking a
real value as an input. The expectation E f (X) of the random variable X is given as follows.

E f (X)=
∫+∞

−∞
f (x)pX (x)dx . (62)

Cf.) For a discrete RV whose support and PMF are X and PX , respectively, we have that
E f (X)=

∑
x∈X

f (x)PX (x).
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The expectation of a function of a continuous RV

A function of a discrete RV is always a discrete RV. However, a function of a continuous
RV is not always a continuous RV.

Even though a function of a continuous RV may not be a continuous RV, its expectation
can always be calculated by the following formula, which is similar to the formula for a
discrete RV.

Theorem

Let X be a continuous RV and its PDF be pX . Also, let f :R→R be a real-valued function taking a
real value as an input. The expectation E f (X) of the random variable X is given as follows.

E f (X)=
∫+∞

−∞
f (x)pX (x)dx . (60)

Cf.) For a discrete RV whose support and PMF are X and PX , respectively, we have that
E f (X)=

∑
x∈X

f (x)PX (x).
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The linearity of the expectation on continuous RVs

The following theorem, which holds for a discrete RV, also holds for a continuous RV.

Theorem (The linearity of the expectation)

Let X be a random variable, a,b ∈R be real numbers, and f ,g :R→R be real-valued functions
taking a real variable. Then, we have that

E [af (X)+bg(X)]= aE f (X)+bEg(X). (61)

© SUZUKI, Atsushi 184



Variance and standard deviation of a continuous random variable

The definitions of the variance and standard deviation are the same for a continuous RV.
Specifically, for a continuous RV X, whose expectation is µX , its variance V(X) is defined
by V(X)B E

(
X −µX

)2. The standard deviation is defined by σX B
√

V(X).

When we know the explicit form of the PDF, we can use the following formulae.

Theorem

Let X be a continuous RV and its PDF be pX . Suppose that the expectation EX =
∫+∞

−∞
xpX (x)dx

exists and denote it by µX . The variance V(X) is given by the following formula.

V(X)=
∫+∞

−∞
(
x−µX

)2pX (x)dx=
∫+∞

−∞
x2pX (x)dx− (

µX
)2. (62)
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Outline

3 Continuous Random Variables

Jointly continuous random variables and multiple integral
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Handling multiple non-discrete random variables

Similar to the univariate random variable case, we can define the cumulative distribution
function (CDF) for multiple RV even if they are not discrete.

Definition (The CDF of two RVs)

Let X and Y be random variables. The cumulative distribution function (CDF) FX,Y :R2 → [0,1]
of X and Y is defined by

FX,Y (x,y)BPr(X ≤ x∧Y ≤ y), (63)

where ∧ indicates the logical “and” statement.

Using the CDF, we can calculate the probability Pr(a1 <X ≤ b1 ∧a2 <Y ≤ b2) by

Pr(a1 <X ≤ b1 ∧a2 <Y ≤ b2)=FX,Y (b1,b2)−FX,Y (a1,b2)−FX,Y (b1,a2)+FX,Y (b1,b2) (64)
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To define the probability density function for a multivariate RV

Let X1,X2, . . . ,Xm be random variables. As in the univariate random variable case, the
CDF may not be easy to interpret or not be elementary even in practical cases. Hence,
we want to define the probability density function (PDF) for multiple RV cases.

The univariate continuous RV theory allows us to define the PDF for each RV, but they
are not sufficient to understand the behavior of a multiple RVs completely, as we saw in
multiple discrete RV cases. To tackle this issue, for discrete RV cases, we evaluated the
Joint PMF, which returns the probability mass of the event
(X1,X2, . . . ,Xm)= (x1,x2, . . . ,xm). Similarly, we want to define the function that returns the
probability density at (X1,X2, . . . ,Xm)= (x1,x2, . . . ,xm). Since the PDF for a univariate
continuous RV was defined using the area under the graph, let us define the graph of a
multivariate function and the high-dimensional area (volume) in the following.
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Let X1,X2, . . . ,Xm be random variables. As in the univariate random variable case, the
CDF may not be easy to interpret or not be elementary even in practical cases. Hence,
we want to define the probability density function (PDF) for multiple RV cases.

The univariate continuous RV theory allows us to define the PDF for each RV, but they
are not sufficient to understand the behavior of a multiple RVs completely, as we saw in
multiple discrete RV cases. To tackle this issue, for discrete RV cases, we evaluated the
Joint PMF, which returns the probability mass of the event
(X1,X2, . . . ,Xm)= (x1,x2, . . . ,xm). Similarly, we want to define the function that returns the
probability density at (X1,X2, . . . ,Xm)= (x1,x2, . . . ,xm). Since the PDF for a univariate
continuous RV was defined using the area under the graph, let us define the graph of a
multivariate function and the high-dimensional area (volume) in the following.
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The graph of a multivariate function and multiple integral

Let D= [a1,b1]× [a2,b2]×·· ·× [am,bm] be a m-dimensional hyper-rectangle. Let f : D→R

be a function of a m-dimensional variable. Similar to one-dimensional function cases, we
call the set of points

{(x1,x2, . . . ,xm, f (x1,x2, . . . ,xm))|(x1,x2, . . . ,xm) ∈D} (65)

the graph of a function f . The (signed) volume in the domain D bounded by the graph of

y= f (x) and y= 0 is called the multiple integral of f on D, denoted by
∫

D
f (x)dx.
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Joint PDF

Based on the definition of multiple integration, we can define the joint probability density
function (joint PDF) of a multivariate random variable.

Definition

Let X1,X2, . . . ,Xm be random variables. If pX1,X2,...,Xm :Rm →R≥0 satisfies

Pr((X1,X2, . . . ,Xm) ∈D)=
∫

D
pX1,X2,...,Xm (x)dx (66)

for any m-dimensional hyper-rectangle D, then the function pX1,X2,...,Xm is called the joint
probability density function (joint PDF) of X1,X2, . . . ,Xm.
If (X1,X2, . . . ,Xm) have a joint PDF, we call them jointly continuous random variables (jointly
continuous RVs).
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Multiple continuous RVs are not always jointly continuous

Let X1,X2, . . . ,Xm be continuous RVs. In other words, suppose that there exist PDFs
pX1 ,pX2 , . . . ,pXm for X1,X2, . . . ,Xm, respectively.

Even under this assumption, it is possible that X1,X2, . . . ,Xm have no joint PDF.

© SUZUKI, Atsushi 191



Multiple continuous RVs are not always jointly continuous

Let X1,X2, . . . ,Xm be continuous RVs. In other words, suppose that there exist PDFs
pX1 ,pX2 , . . . ,pXm for X1,X2, . . . ,Xm, respectively.

Even under this assumption, it is possible that X1,X2, . . . ,Xm have no joint PDF.

Example

For example, let X and Y be a continuous RV following the uniform distribution on [0,1] and
suppose that X =Y always hold. Then, both X and Y have the same PDF

pX (z)= pY (z)

{
1 if 0≤ z≤ 1,
0 otherwise.

, so both X and Y are continuous RVs. However, the probability

mass concentrates on the segment from the origin (0,0) to the point (1,1) in the xy space. The
segment has zero area, but if there existed the joint PDF, the volume bounded by the graph of the
joint PDF on the segment would be 1. This is a contradiction, so X,Y have no joint PDF. Hence,
X,Y are not jointly continuous.
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Multiple continuous RVs are not always jointly continuous

Let X1,X2, . . . ,Xm be continuous RVs. In other words, suppose that there exist PDFs
pX1 ,pX2 , . . . ,pXm for X1,X2, . . . ,Xm, respectively.

Even under this assumption, it is possible that X1,X2, . . . ,Xm have no joint PDF.

To wrap up, even if both X and Y are continuous RVs, it does not follow that the X,Y
are jointly continuous! Conversely, jointly continuous RVs are always multiple
continuous RVs.

For this reason, we need to distinguish multiple continuous RVs and jointly
continuous RVs. The former is the broader concept, but we focus on the latter since we
have many mathematical tools based on the multiple integration to analyze them.
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Multiple integral on a complicated shape

In high-dimensional space, we might want to consider the volume bounded by a function
in a complicated shape, say A , that cannot be represented as a union of
hyper-rectangles.

Hence, we want to define the volume bounded by a function on a general set A . We can
do it by multiplying the value of the function by zero everywhere outside of A as follows.

Definition

Let D= [a1,b1]× [a2,b2]×·· ·× [am,bm] be a m-dimensional hyper-rectangle.
For a general subset A ⊂D, we define the multiple integral of f on A by∫

A
f (x)dxB

∫
D

1A (x)f (x)dx , (67)

where the indicator function 1A is defined by 1A (x)B

{
1 if x ∈A ,
0 if x ∉A .
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Multiple integral on a complicated shape

In high-dimensional space, we might want to consider the volume bounded by a function
in a complicated shape, say A , that cannot be represented as a union of
hyper-rectangles.

For example, we might want to consider the probability Pr((X,Y) ∈A ), where
A B

{
(x,y) ∈R2∣∣x2 +y2 ≤ 1

}
is defined as the unit disk centered at the origin. We cannot

decompose the disk into rectangles, so we cannot evaluate the probability by the sum
rule if we can only define the probability of the multivariate RV being in a rectangle.

Hence, we want to define the volume bounded by a function on a general set A . We can
do it by multiplying the value of the function by zero everywhere outside of A as follows.

Definition

Let D= [a1,b1]× [a2,b2]×·· ·× [am,bm] be a m-dimensional hyper-rectangle.
For a general subset A ⊂D, we define the multiple integral of f on A by∫

A
f (x)dxB

∫
D

1A (x)f (x)dx , (67)

where the indicator function 1A is defined by 1A (x)B

{
1 if x ∈A ,
0 if x ∉A .
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Multiple integral on a complicated shape

In high-dimensional space, we might want to consider the volume bounded by a function
in a complicated shape, say A , that cannot be represented as a union of
hyper-rectangles.
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do it by multiplying the value of the function by zero everywhere outside of A as follows.
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A
f (x)dxB

∫
D

1A (x)f (x)dx , (67)
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0 if x ∉A .
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Probability on a complicated shape

The probability density function can be applied to a complicated shape.

Theorem

Let X1,X2, . . . ,Xm be jointly continuous RVs, and let pX1,X2,...,Xm be the joint PDF.
For A ∈Rm, assume that it is bounded, i.e., there exists hyper-rectangle
D= [a1,b1]× [a2,b2]×·· ·× [am,bm] such that A ∈D.
Then, we have that

Pr((X1,X2, . . . ,Xm) ∈A )=
∫
A

pX1,X2,...,Xm (x)dx (68)

The assumption about the boundedness of A will be removed later using improper
integrations.
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We can calculating a multiple integral by the iterated integral

We need to calculate a multiple integral to evaluate the probability of an event related to
jointly continuous RVs. How can we do that?

Actually, we can calculate a multiple integral by the iterated integral, according to
Fubini-Tonelli Theorem.

Theorem (Fubini-Tonelli Theorem)

Let f :Rm →R be a function and A ⊂Rm be a subset of Rm and suppose that there exists a
bounded m-dimensional hyper-rectangle D= [a1,b1]× [a2,b2]×·· ·× [am,bm].
Then, under a certain loose conditions, we have that∫

A
f (x)dx=

∫bm

am

· · ·
(∫b2

a2

(∫b1

a1

1A (x)f (x)dx1

)
dx2

)
· · ·dxm . (69)

Note that the order of the indices is exchangeable.
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Special case: calculating a double integral

A bivariable multiple integral is called a double integral . The formula for a double
integral is given as follows.

Corollary (Fubini-Tonelli theorem on a double integral)

Let f :R2 →R be a function and A ⊂R2 be a subset of R2 and suppose that there exists a
bounded 2-dimensional hyper-rectangle D= [a1,b1]× [a2,b2]. Then, under a certain loose
conditions, we have thatÏ

A
f (x1,x2)dx1 dx2 =

∫b2

a2

[∫b1

a1

1A (x1,x2)f (x1,x2)dx1

]
dx2

=
∫b1

a1

[∫b2

a2

1A (x1,x2)f (x1,x2)dx2

]
dx1 .

(70)
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Advanced: the loose condition for the Fubini-Tonelli theorem to hold.

Strictly speaking, the following condition must be satisfied for the Fubini-Tonelli theorem
to hold, i.e., for the iterated integral to give the correct value of the multiple integral.

Condition: The following limit converges (note the absolute value operation).∫bm

am

· · ·
(∫b2

a2

(∫b1

a1

1A (x)|f (x)|dx1

)
dx2

)
· · ·dxm . (71)

However, the above is rarely an issue in engineering or computer science.
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Improper multiple integral

We might want to evaluate the volume bounded by a function’s graph in a unbounded
domain A . In that case, we define the improper multiple integral as follows.

Definition (Improper multiple integral)

Let A ⊂Rm and f :Rm →R be a function defined on Rm. Denote by lim
a→−∞
b→+∞

the iterated limit

operator lim
b→+∞

lim
a→−∞. Assume that a certain loose condition is satisfied. Then, we define∫

A
f (x)dx by ∫

A
f (x)dxB lim

am→−∞
bm→+∞

· · · lim
a2→−∞
b2→+∞

lim
a1→−∞
b1→+∞

∫
D

1A (x)f (x)dx , (72)

where D= [a1,b1]× [a2,b2]×·· ·× [am,bm].
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Advanced: the loose condition

We assumed some condition in the previous slide. This is because, in fact, the definition
in the previous slide is not standard and we usually use another definition for the integral
of a function on Rm.

However, if a condition is satisfied, the two definitions are consistent, which is why we
imposed the condition. The condition is as follows:

Condition: The following limit converges (note the absolute value operation).

lim
am→−∞
bm→+∞

∫bm

am

· · ·
 lim

a2→−∞
b2→+∞

∫b2

a2

 lim
a1→−∞
b1→+∞

∫b1

a1

1A (x)|f (x)|dx1

dx2

 · · ·dxm . (73)

To prove that these two are equivalent, first we define it in the standard way based on the
Lebesgue integral, and use the dominant convergence theorem and Fubini-Tonelli’s
theorem iteratively.
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Calculating an improper multiple integral

We can calculate a improper multiple integral by an iterated improper integral.

Theorem (Calculating an improper multiple integral)

Let A ⊂Rm and f :Rm →R be a function defined on Rm. Assume that the loose condition in the
previous slide is satisfied. Then, we have that∫

A
f (x)dx=

∫+∞

−∞
· · ·

(∫+∞

−∞

(∫+∞

−∞
1A (x)f (x)dx1

)
dx2

)
· · ·dxm . (74)
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Special case: an improper multiple integral on the whole space

By substituting A with Rm, we can define and calculate the improper multiple integral on
the whole space Rm. Here, what we need to do is to substitute 1Rm(x)= 1 for any x ∈Rm.

Corollary (Calculating an improper multiple integral on the whole space)

Let f :Rm →R be a function defined on Rm. Assume that the loose condition is satisfied. Then, we
have that ∫

Rm
f (x)dxB lim

am→−∞
bm→+∞

· · · lim
a2→−∞
b2→+∞

lim
a1→−∞
b1→+∞

∫
D

1Rm (x)f (x)dx

=
∫+∞

−∞
· · ·

(∫+∞

−∞

(∫+∞

−∞
f (x)dx1

)
dx2

)
· · ·dxm .

(75)
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Special case: an improper double integral

Corollary (Calculating an improper double integral)

Let f :R2 →R be a function and A ⊂R2 be a subset of R2. Then, under the loose condition, we
have that Ï

A
f (x1,x2)dx1 dx2 =

∫+∞

−∞

(∫+∞

−∞
1A (x1,x2)f (x1,x2)dx1

)
dx2

=
∫+∞

−∞

(∫+∞

−∞
1A (x1,x2)f (x1,x2)dx2

)
dx1 .

(76)
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Steps to calculate a double integral

Recall that we haveÏ
A

f (x1,x2)dx1 dx2 =
∫+∞

−∞

(∫+∞

−∞
1A (x1,x2)f (x1,x2)dx1

)
dx2

=
∫+∞

−∞

(∫+∞

−∞
1A (x1,x2)f (x1,x2)dx2

)
dx1 .

(77)

Hence, we can calculate the double integral
Î

A f (x1,x2)dx1 dx2 as follows.

• Step 1.

Find the function g(x2)B
∫+∞

−∞
1A (x1,x2)f (x1,x2)dx1 by the improper integral

with respect to x1.

• Step 2.

Evaluate the improper integral
∫+∞

−∞
g(x2)dx2 with respect to x2.
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Steps to calculate a double integral
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=
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−∞
1A (x1,x2)f (x1,x2)dx2

)
dx1 .

(77)

Hence, we can calculate the double integral
Î

A f (x1,x2)dx1 dx2 as follows.

• Step 1. Find the function g(x2)B
∫+∞

−∞
1A (x1,x2)f (x1,x2)dx1 by the improper integral

with respect to x1.

• Step 2. Evaluate the improper integral
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−∞
g(x2)dx2 with respect to x2.

© SUZUKI, Atsushi 202



Joint PDF example 1: Uniform distribution

Example (Uniform distribution)

Let X and Y be RVs following the bivariate uniform distribution with the support [0,3]× [−1,+1].
The RVs X and Y have has the joint PDF

pX,Y (x,y)=
{

1
6 if (x,y) ∈ [0,3]× [−1,+1],
0 if (x,y) ∉ [0,3]× [−1,+1].

(78)

For example, the probability Pr
(
(X,Y) ∈ [0, 1

2 ]× [0, 1
4 ]

)
is given by

∫ 1
4

0

∫ 1
2

0

1
6

dxdy=
∫ 1

4

0

[
1
6

x
] 1

2

0
dy=

∫ 1
4

0

1
12

dy=
[

1
12

y
] 1

4

0
= 1

48
(79)
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Joint PDF example 2

Example

Let X1,X2 be jointly continuous RVs and assume that its joint PDF pX1,X2 is given by

pX1,X2 (x1,x2)= 1A (x1,x2)f (x1,x2), (80)

where f (x1,x2)= 3−3x1 − 3
2 x2, and A = {

(x1,x2) ∈R2∣∣x1 ≥ 0,x2 ≥ 0, x1
1 + x2

2 ≤ 1
}
.

In the following, we will first confirm that
Ï

R2
pX1,X2(x1,x2)dx1 dx2 = 1, then calculate the

probability Pr((X,Y) ∈B), where B = {
(x1,x2) ∈R2∣∣x1 ≥ 0,x2 ≥ 0,x1 +x2 ≤ 1

}
.
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Joint PDF example 2: (i) Confirming the integral on R2 is 1

Let’s calculate
∫
R2

pX1,X2(x1,x2)dx1 dx2 = 1 by the iterated integration. We have that∫
R2

pX1,X2(x1,x2)dx1 dx2 =
∫+∞

−∞

(∫+∞

−∞
pX1,X2(x1,x2)dx2

)
dx1. We first evaluate the integral∫+∞

−∞
pX1,X2(x1,x2)dx2.

Since pX1,X2(x1,x2)= 1A (x1,x2)f (x1,x2), we have that

∫+∞

−∞
pX1,X2(x1,x2)dx2 =

{∫2−2x1
0 f (x1,x2)dx2 if 0≤ x1 ≤ 1,

0 otherwise.
(81)

Hence, we have that∫
R2

pX1,X2(x1,x2)dx1 dx2 =
∫1

0

(∫2−2x1

0
f (x1,x2)dx2

)
dx1 = 1. (82)
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Joint PDF example 2: (i) Confirming the integral on R2 is 1
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Joint PDF example 2 (ii) Probability in Region B

Let’s calculate Pr((x1,x2) ∈B)=
∫
R2

1B(x1,x2)pX1,X2(x1,x2)dx1 dx2 = 1 by the iterated

integration. We have that∫
R2

1B(x1,x2)pX1,X2(x1,x2)dx1 dx2 =
∫+∞

−∞

(∫+∞

−∞
1B(x1,x2)pX1,X2(x1,x2)dx2

)
dx1. We first

evaluate the integral
∫+∞

−∞
1B(x1,x2)pX1,X2(x1,x2)dx2.

As B ⊂A , we have that 1B(x1,x2)pX1,X2(x1,x2)= 1B(x1,x2)f (x1,x2). Hence∫+∞

−∞
pX1,X2(x1,x2)dx2 =

{∫1−x1
0 f (x1,x2)dx2 if 0≤ x1 ≤ 1,

0 otherwise.
(83)

Hence, we have that∫
R2

pX1,X2(x1,x2)dx1 dx2 =
∫1

0

(∫1−x1

0
f (x1,x2)dx2

)
dx1 = 3

4
. (84)
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Integration by substitution for a multiple integral

When we want to evaluate a multiple integral of a complicatedly composed function, an
integration by substitution might help, as it does for univariate case.

Theorem (Integration by substitution for a multiple integral)

Let f :Rm →R be a m-variable real-valued function and φ :Rm →Rm be a bijective differentiable
m-variable m-dimensional-vector-valued function. Also, let U be a subset of Rm. Then we have
the following. ∫

U
f
(
φ(u)

)∣∣∣∣det
(
∂φ

∂u
(u)

)∣∣∣∣du=
∫
φ(U)

f (x)dx . (85)

Here, det indicates the determinant, and ∂φ
∂u is the Jacobian of φ.
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Difference between a univariable integral and a multiple integral

Strictly, the previous slide’s formula is not a strict extension of the univariable case since
we have the absolute value operator outside the determinant of the Jacobian. This
difference comes because we do not care the direction of the integral as we did in a
univariable case.

Specifically, we distinguished
∫b

a and
∫a

b in the univariable case, but we do not care such
differences in a multiple integral.

If you want to distinguish them in multiple integral, you can learn a differential form or
volume form.
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Integration by substitution for a double integral

To see the formula in detail, let us consider the bivariable case.

Corollary (Integration by substitution for a double integral)

∫
U

f
(
φ1(u1,u2),φ2(u1,u2)

)∣∣∣∣∣det

([
∂φ1
∂u1

(u1,u2) ∂φ1
∂u2

(u1,u2)
∂φ2
∂u1

(u1,u2) ∂φ2
∂u2

(u1,u2)

])∣∣∣∣∣du1 du2

=
∫
φ(U)

f (x1,x2)dx1 dx2

(86)

Here, recall that

det
([

a b
c d

])
= ad−bc. (87)
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An example of integration by substitution

Most practical substitutions are given by the polar coordinate: x= rcosθ,y= rsinθ.

By this substitution, we have that
√

x2 +y= r.

Also, the determinant of the Jacobian of the coordinate transform is given by

det

([
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

])
= det

([
cosθ −rsinθ

sinθ rcosθ

])
= rcos2θ− (−rsin2)= r. (88)

Using the above results, we can calculate, for example,Ï
x2+y2≤1

(
1−

√
x2 +y2

)
dxdy=

∫2π

0

∫1

0
(1−r)

∣∣∣∣∣det

([
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

])∣∣∣∣∣drdθ

=
∫2π

0

∫1

0
(1−r)|r|drdθ

=
∫2π

0

[∫1

0

(
r−r2)

dr
]

dθ =
∫2π

0

1
6

dθ = 1
3
π.

(89)
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Outline

3 Continuous Random Variables

Relation among jointly continuous RVs
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Note

In the following, we focus on two variable cases to make the discussion easier.
Nonetheless, the same discussion holds for general cases.
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Marginal PDF (bivariable cases)

We first discuss the PDF of each RV, which helps us see the conditional distribution later,
as we did in discrete cases.

When we have the joint PDF of (X,Y), each of X and Y also has a PDF. To distinguish it
from the joint PDF, we call each marginal probability density function (marginal PDF).
We can obtain the explicit form of each by the integral as follows.

Theorem

Suppose that (X,Y) is a bivariate continuous RV and its joint PDF is pX,Y . Then, the marginal
probability density functions (marginal PDFs) pX and pY are given by

pX (x)=
∫+∞

−∞
pX,Y (x,y)dy,

pY (y)=
∫+∞

−∞
pX,Y (x,y)dx.

(90)

respectively.
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Conditional PDF (bivariate cases)

Similar to the conditional PMF, we can consider the PDF of a RV updated by knowing the
value of the other RV. The updated PDF is called the conditional probability
distribution function (conditional PDF). As in the conditional PMF, the conditional PDF
is proportional to the joint PDF. Since the integral of the conditional PDF on the whole
real number line must be 1, the conditional PDF is defined as the conditional PDF over
the marginal PDF.

Definition

Suppose that (X,Y) is a bivariate continuous RV and its joint PDF is pX,Y . Then, for all y such that
pY (y), 0, the conditional probability distribution function (conditional PDF) pX|Y of X given
Y = y is defined by

pX|Y (x|y)= pX,Y (x,y)
pY (y)

. (91)

Note: if pY (y)= 0, the above fraction diverges. However, we do not care it since Y cannot
such a value y.© SUZUKI, Atsushi 214



Independence

Similar to discrete RV cases, if the conditional PDF is always the same as the marginal
PDF, we say that the two RVs are independent , that is, not related.

Definition (Independence of continuous RVs)

Let X and Y be RVs and assume that they have a joint PDF pX,Y and let their marginal PDFs be
pX and pY . Also, denote the conditional PDF of X given Y and that of Y given X by pX|Y and pY|X ,
respectively.
We say that the RVs X and Y are (mutually) independent if one of the following equivalent
conditions holds

• pX,Y (x,y)= pX (x)pY (y) for all (x,y).

• pX|Y (x|y)= pX (x) for all (x,y) such that pY (y), 0.

• pY|X (y|x)= pY (y) for all (x,y) such that pX (x), 0.
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Calculating the expectation of a function from joint PDF

When we quantify the relation between RVs, we often calculate the expectation of a
function, as we do to evaluate the covariance. We can calculate it using the joint PDF as
follows.

Theorem (Expectation of a function of jointly continuous RVs)

Let (X1,X2, . . . ,Xm) be a multivariate RV and pX1,X2,...,Xm be the joint PDF. Let f :Rm →R be a
function. The expectation of the random variable f (X1,X2, . . . ,Xm) is given by∫

Rm
f (x)pX1,X2,...,Xm (x)dx. (92)
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Covariance

For two RVs X and Y, the covariance Cov(X,Y) is defined by
Cov(X,Y)B E

(
X −µX

)(
Y −µY

)
. We can calculate it using the joint PDF.

Theorem

Let X and Y are random variables and µX and µY be the expectation of X and Y, respectively.
Suppose that pX,Y is a joint PDF of X and Y. Then, the covariance Cov(X,Y) is given by

Cov(X,Y)=
Ï

R2

(
x−µX

)(
y−µY

)
pX,Y (x,y)dxdy. (93)
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Example: Multivariate normal distribution

Example (Multivariate normal distribution)

Let µ be a real m-dimensional vector and Σ be a real m×m positive definite matrix, i.e., a m×m
matrix such that x>Σx> 0 for any non-zero m-dimensional vector x. We call the distribution of a
m-tuple (X1,X2, . . . ,Xm) of RVs a multivariate normal distribution if it has the following joint PDF
pX,Y .

pX1,X2,...,Xm (x)= 1√
(2π)m det(Σ)

exp
(
−1

2
(
x−µ

)>
Σ−1(

x−µ
))

(94)

Suppose that Σ is a diagonal matrix, i.e., sij = 0 if i, j. Then, det(Σ)=
m∏

i=1
si and

−1
2

(
x−µ

)>
Σ−1(

x−µ
)=−1

2

m∑
i=1

(
xi −µi

)2

sii
. Therefore, we have the decomposition:

pX1,X2,...,Xm (x)=
m∏

i=1

1p
2πsii

exp

(
−

(
xi −µi

)2

2sii

)
. Hence, if Σ is diagonal, then X1,X2, . . . ,Xm are

mutually independent.
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Example: Multivariate normal distribution

Example (Multivariate normal distribution)

Recall that the joint PDF of a multivariate normal distribution is given as follows.

pX1,X2,...,Xm (x)= 1√
(2π)m det(Σ)

exp
(
−1

2
(
x−µ

)>
Σ−1(

x−µ
))

(94)

For a bivariable case m= 2, the joint PDF is given by

pX1,X2 (x1,x2)= 1√
(2π)2 det(Σ)

exp

(
−1

2
([

x1 x2
]− [

µ1 µ2
])[s11 s12

s21 s22

]−1([
x1
x2

]
−

[
µ1
µ2

]))
, (95)

where µ=
[
µ1
µ2

]
is a 2-dimensional vector and Σ=

[
s11 s12
s21 s22

]
is a real 2×2 positive definite

matrix.

Suppose that Σ is a diagonal matrix, i.e., sij = 0 if i, j. Then, det(Σ)=
m∏

i=1
si and

−1
2

(
x−µ

)>
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x−µ
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2
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)2

sii
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Outline

3 Continuous Random Variables

Exercises
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Exercise (Continuous random variable)

Let X be a random variable, and let FX be the cumulative distribution function (CDF) of X, given by

FX (x)=


0 if x≤ 0,
1
4 x2 if 0≤ x≤ 2,
1 if x≥ 2.

(1) Evaluate the probability Pr(0.25≤X ≤ 0.75).
(2) FX is differentiable at all but a finite number of points, and its derivative is X ’s probability
density function (pX ), which can be arbitrary at points of non-differentiability. Evaluate pX (0.5) and
pX (3).
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Example answer:

(1) From the definition of the cumulative distribution function,
Pr(0.25≤X ≤ 0.75)=FX (0.75)−FX (x) limx→0.25(x). Since FX is a continuous function,
limx→0.25 FX (x)=FX (0.25).

Therefore, Pr(0.25≤X ≤ 0.75)=FX (0.75)−FX (0.25)= 1
40.752 − 1

40.252 = 1
4 .
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Example answer:

(2) Except at the two points x= 0,2, on all of the real line, the derivative of FX can be

simply calculated using the formula for the derivative of a polynomial
d
dx

xn = nxn−1 as

follows:
0 if x< 0,
1
2x if 0< x< 2,
0 if x> 2.

Hence, pX (0.5)= 1
2 · (0.5)= 0.25,pX (3)= 0.
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Example answer:

Note: FX is, in fact, differentiable at x= 0. This can be shown since the value of the left
derivative limh↗0

FX (0+h)−FX (0)
h matches the value of the right derivative

limh↘0
FX (0+h)−FX (0)

h , both being 0, thus the derivative
d
dx

FX (0)= 0.

On the other hand, FX is not differentiable at x= 2. This is because the value of the left
derivative limh↗0

FX (2+h)−FX (2)
h is 1, and the value of the right derivative

limh↘0
FX (2+h)−FX (2)

h is 0, and the two do not match.
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Exercise (Multivariate normal distribution)

(1) Define integral K(R)=
∫R

0
rexp

(
−r2

2

)
dr. Find K(2).

(2) By the change of variables

{
x= rcosθ,
y= rsinθ,

where r≥ 0, compute the absolute value of the

Jacobian determinant |det( ∂(x,y)
(r,θ) )| = at r= 0.5,θ =π.
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Exercise (Multivariate normal distribution)

(3) For R≥ 0, evaluate the double integral I(R)=
Ï

x2+y2≤R2
exp

(
−x2 +y2

2

)
dxdy for R= 2.

(4) Evaluate the value of the improper double integral
∫
R2

exp
(
−x2 +y2

2

)
dxdy as R approaches

infinity, i.e., limR→+∞ I(R).
(5) The bivariate improper integral discussed in the above (4) can be decomposed into the
product of univariate improper integrals as follows:∫
R2

exp
(
−x2 +y2

2

)
dxdy=

∫
R2

exp
(
−x2

2

)
exp

(
−y2

2

)
dxdy=

(∫+∞

−∞
exp

(
−x2

2

)
dx

)(∫+∞

−∞
exp

(
−y2

2

)
dy

)
=(∫+∞

−∞
exp

(
−x2

2

)
dx

)2

Evaluate the improper integral
∫+∞

−∞
exp

(
−x2

2

)
dx.
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Exercise (Multivariate normal distribution)

For (6) - (10), let X,Y be random variables with the joint probability density function pX,Y specified
by
pX,Y (x,y)= cexp

(
− x2+y2

2

)
,

where c is a constant.
(6) Given that pX,Y is a joint probability density function, determine the constant c.
(7) Calculate the probability Pr(X2 +Y2 ≤ 22).
(8) The marginal probability density function for X, pX (x), is found by pX (x)=∫+∞

−∞ pX,Y (x,y)dy.
Evaluate pX (−2).
(9) The conditional probability density function for Y given X, pY|X (y|x), is calculated by

pY|X (y|x)= pX,Y (x,y)
pX (x) . Evaluate pY|X (0|−2).

(10) Evaluate the expected value of (X2 +Y2)2, E[(X2 +Y2)2].
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Exercise (Multivariate normal distribution)

For (6) - (10), let X,Y be random variables with the joint probability density function pX,Y specified
by
pX,Y (x,y)= cexp

(
− x2+y2

2

)
,

where c is a constant.
(11) Select the ONE correct statement from the above:

• X and Y are independent, and the covariance of X and Y is 0. (correct)

• X and Y are independent, and the covariance of X and Y is non-zero.

• X and Y are not independent, and the covariance of X and Y is 0.

• X and Y are not independent, and the covariance of X and Y is non-zero.
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Example answer:

(1) K(R)=
∫R

0
rexp

(
−r2

2

)
dr can be calculated using a substitution of variables with

s= r2

2
, leading to

∫R

0
rexp

(
−r2

2

)
dr=

∫R2
2

0
exp(−s)

ds
dr

dr=
∫R2

2

0
exp(−s)ds. Since∫R2

2

0
exp(−s)ds= [−exp(−s)]R2

0 = 1−exp
(−R2)

, for R= 2, we have

K(2)= 1−exp
(
−22

2

)
= 1− 1

e2 .
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Example answer:

(2) By definition, the Jacobian is given by ∂(x,y)
∂(r,θ) =

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
. The first column vector[

∂x
∂r
∂y
∂r

]
represents the velocity vector of the (x,y) coordinates moving at unit speed in the

positive direction of r with θ held fixed, and the second column vector

[
∂x
∂θ
∂y
∂θ

]
represents

the velocity vector of the (x,y) coordinates when θ is moved at unit speed with r held

fixed. Calculating the Jacobian, we find
[

cosθ −rsinθ

sinθ rcosθ

]
, and thus its determinant is

r(cos2θ+sin2θ)= r, which is always positive, meaning the absolute value of the
determinant of the Jacobian is r (independent of the value of θ). Therefore, for r= 0.5,
θ =π, we have |det( ∂(x,y)

∂(r,θ) )| = 0.5. This coordinate transformation is known as polar
coordinate transformation, where r represents the distance from the point (x,y) to the
origin, and θ represents the angle formed by the line segment (0,0) — (x,y) with the
positive direction of the x-axis.
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Example answer:

(3) The formula for variable substitution (substitution integration) in double integrals is
given by

∫
A′ f (x,y)dxdy=∫

A f (x(r,θ),y(r,θ))| ∂(x,y)
∂(r,θ) |drdθ, where the right side uses notation

loosely, with r and θ representing the functions for x and y values respectively, and A′ and
A are the regions corresponding through the variable transformation. In this problem, the
region A corresponding to x2 +y2 ≤R2 translates in the (r,θ) coordinate system to a
region A′ satisfying 0< r≤R and 0≤ θ < 2π, the original domain of θ. Paying attention to
the calculated | ∂(x,y)

∂(r,θ) | = r, we can compute∫
x2+y2≤R2 exp

(
− x2+y2

2

)
dxdy=∫2π

0
∫R

0 exp
(
− r2

2

)
rdrdθ. Evaluating the double integral by

computing the integral over r first, as done in (1) where K(R)= 1−exp
(
−R2

2

)
, we find

I(R)=∫2π
0

(
1−exp

(
−R2

2

))
dθ = 2π(1−exp

(
−R2

2

)
). Therefore, I(2)= 2π

(
1− 1

e2

)
.

(4)
∫
R2 exp

(
− x2+y2

2

)
dxdy= limR→+∞ I(R)= limR→+∞2π

(
1−exp

(
−R2

2

))
= 2π.
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Example answer:

(5) 2π=
∫
R2

exp
(
−x2 +y2

2

)
dxdy=

(∫+∞

−∞
exp

(
−x2

2

)
dx

)2

. Since exp
(
− x2

2

)
is always positive,∫+∞

−∞ exp
(
− x2

2

)
dx is non-negative. Hence,

∫+∞
−∞ exp

(
− x2

2

)
dx= p

2π. It is known that the

antiderivative of exp
(
− x2

2

)
is not an elementary function, making it difficult to directly

compute this improper integral as the limit of a definite integral. This problem approached
the double integral and polar coordinate transformation, an idea dating back to Poisson in
the 19th century, and this broad integral is known as the Gaussian integral or
Euler-Poisson integral.
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Example answer:

(6) Since pX,Y is the joint probability density function,
∫
R2 pX,Y (x,y)dxdy= 1. Using the

result from (4), we can compute
∫
R2 pX,Y (x,y)dxdy=∫

R2 cexp
(
− x2+y2

2

)
dxdy= c2π.

Therefore, c= 1
2π .

(7) From the definition of the joint probability density function,
Pr(X2 +Y2 ≤R2)=∫

x2+y2≤R2 pX,Y (x,y)dxdy. Using the definition of pX,Y and the value of c

found in (6), we have
∫

x2+y2≤R2 pX,Y (x,y)dxdy=∫
x2+y2≤R2

1
2π exp

(
− x2+y2

2

)
dxdy= 1

2πI(R).

Thus, Pr(X2 +Y2 ≤ 22)= 1
2πI(2)= 1

2π2π
(
1− 1

e2

)
.
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Example answer:

(8) The integrand pX,Y (x,y)= 1
2π exp

(
− x2+y2

2

)
= 1

2π exp
(
− x2

2

)
exp

(
− y2

2

)
can be decomposed

into functions of x and y. Utilizing this,
pX (x)=∫+∞

−∞ pX,Y (x,y)dy=∫+∞
−∞

1
2π exp

(
− x2

2

)
exp

(
− y2

2

)
dy= 1

2π exp
(
− x2

2

)∫+∞
−∞ exp

(
− y2

2

)
dy.

From (5),
∫+∞
−∞ exp

(
− y2

2

)
dy= p

2π hence, pX (x)= 1p
2π

exp
(
− x2

2

)
. Therefore,

pX (−2)= 1p
2πe2 .

(9) From pY|X (y|x)= pX,Y (x,y)
pX (x)

, we have pY|X (0|−2)=
1

2πe2
1p

2πe2
= 1p

2π
.
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Example answer:

(10) E[(X2 +Y2)2]=
∫
R2

(x2 +y2)2pX,Y (x,y)dxdy can be calculated using the joint

probability density function. Utilizing polar coordinate transformation similarly to (3) and

(4), where (x2 +y2)2 = r4, we compute
∫
R2

(x2 +y2)2pX,Y (x,y)dxdy= lim
R→+∞

∫2π

0
L(R)dθ,

where L(R)=
∫R

0
r4 1

2π
exp

(
−r2

2

)
·rdr. Using the substitution s= r2

2 , we find it equals∫R2
2

0
4s2 1

2π
exp(−s)ds. Evaluating the antiderivative of s2 exp(−s) through integration by

parts twice, we find
∫

s2 exp(−s)=−s2 exp(−s)−2sexp(−s)−2exp(−s)+C, where C is the

integration constant. Thus, L(R)= 2
π

(
2−2 ·

(
R4

4
+2 · R2

2
+2

)
exp

(
−R2

2

))
. Therefore,∫

R2
(x2 +y2)2pX,Y (x,y)dxdy= lim

R→+∞

∫2π

0
L(R)dθ = 8.
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Example answer:

(11) From the result of (8), pX (x)= 1p
2π

exp
(
− x2

2

)
, and similarly, pY (y)= 1p

2π
exp

(
− y2

2

)
.

Thus, pX,Y (x,y)= pX (x)pY (y), and the random variables X and Y are independent.
Therefore, the covariance and correlation coefficient between X and Y are 0.
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Outline

4 Sample Statistics

Introduction: why do we learn sample statistics?
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Sample and sample statistics

In real applications, we rarely know the true distribution, behind the data.

On the other hand, we often have many data points that we can assume follow the
same distribution (often independently). Such a series of data points is called sample of
the distribution.

Statistics, data science, machine learning, etc., aim to extract information about the
true distribution from available data points. Sample statistics are the basis of
those pieces of technology.
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Learning outcomes

By the end of this section, you should be able to:

• Explain the difference between summary statistics and sample statistics,

• Estimate the true mean of an unknown distribution by finite size sample,

• Explain why many random variables in the real world follow a normal distribution, and

• Estimate an unknown distribution using a parametric model and maximum likelihood
estimator.

© SUZUKI, Atsushi 227



Outline

4 Sample Statistics

Terminology
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Population and sample

In the context of statistics,

• The true distribution is often called the population.

• A series of data points that we can assume follow the same distribution is called
sample. If it has many data points, we say that the sample is large, and if it has few
data, we say that the sample is small.
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Summary statistics and sample statistics

• Summary statistics aims to describe characteristics of a (known or true)
distribution by a few values.

• Sample statistics aims to estimate some information about the true distribution
from finite sample data.

We only have finite data points in real applications, so sample statistics are practically
necessary to handle probability.
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Outline

4 Sample Statistics

Sample mean, law of large numbers, and central limit theorem
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Sample mean

One principal summary statistic is the expectation.

For data points X1,X2, . . . ,Xm, we can easily calculate the sample mean

Xm = 1
m

(X1 +X2 +·· ·+Xm), (95)

the mean of the data points.

If we can assume that those data points are the values of random variables following the
same distribution with a true mean µ, we expect Xm to approximate the true mean µ,
which is unknown.

Is it correct? The answer is YES, according to the law of large numbers.
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Law of large numbers

Theorem ((Strong) law of large numbers)

Let X1,X2, . . . be an infinite sequence of independently and identically distributed (i.i.d.) random
variables and assume that the mean of the distribution is µ ∈R.
Let Xm be the sample mean

XmB
1
m

(X1 +X2 +·· ·+Xm). (96)

Then Xm converges to µ in probability 1.

Thus, the sample mean tells us some information about the unknown true distribution!
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How the sample mean behaves?

The sample mean converges to the expectation. Now,

• How close to the expectation will the sample mean get as we increase the data
points?

• What does the distribution of the sample mean look like?

The answer is

• The difference between the sample mean and the true expectation is proportional to
the standard deviation σ of the true distribution and 1p

m ,

• With appropriate scaling, the distribution of the sample mean converges to a normal
distribution (Gaussian distribution),

according to the central limit theorem.
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What is the standard normal distribution?

The standard normal distribution, also known as the standard Gaussian distribution
is the distribution with the following PDF:

p(x)= 1p
2π

exp
(
−x2

2

)
. (97)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: The standard normal distribution’s PDF.

Mean: 0, Variance: 1. The PDF is symmetric about x= 0 and it is dense around x= 0.
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Central limit theorem (CLT)

Theorem (Central limit theorem (CLT))

Let X1,X2, . . . be an infinite sequence of independently and identically distributed (i.i.d.) random
variables and assume that the mean and variance of the distribution are µ ∈R and σ2 ∈R≥0,
respectively.
Let Xm be the sample mean

XmB
1
m

(X1 +X2 +·· ·+Xm). (98)

Then, the CDF of
p

m Xm−µ
σ

converges to the CDF of the standard normal distribution at any point
in R.
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The standard normal distribution’s CDF

By definition, the CDF F :R→ [0,1] of the standard normal distribution is given by

F(x)=
∫x

−∞
1p
2π

exp
(
−x′2

2

)
dx′ . (99)

It is known that this function is not elementary.

x

y
+1.0

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: The standard normal distribution’s CDF.
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Example of the convergence by the CLT

Example

Let X1,X2, . . . be an infinite sequence of independently identically distributed RVs, where Xi takes
0 or +1 with probability 1

2 for each.
Then the mean and the variance of Xi are 1

2 and 1
4 , respectively.

According to the CLT, the CDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal

distribution N (0,1).

x

y
+1.0

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0−0.5−1.0−1.5−2.0−2.5−3.0−3.5−4.0

Figure: Dashed: the standard normal distribution’s CDF.
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Example of the convergence by the CLT

Example

Let X1,X2, . . . be an infinite sequence of independently identically distributed RVs, where Xi takes
0 or +1 with probability 1

2 for each.
Then the mean and the variance of Xi are 1

2 and 1
4 , respectively.

According to the CLT, the CDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal

distribution N (0,1).

x

y
+1.0

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0−0.5−1.0−1.5−2.0−2.5−3.0−3.5−4.0

Figure: Dashed: the standard normal distribution’s CDF. Solid: the CDF of 2
p

m
(
Xm − 1

2

)
, where

m= 1.
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Example of the convergence by the CLT

Example

Let X1,X2, . . . be an infinite sequence of independently identically distributed RVs, where Xi takes
0 or +1 with probability 1

2 for each.
Then the mean and the variance of Xi are 1

2 and 1
4 , respectively.

According to the CLT, the CDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal

distribution N (0,1).

x

y
+1.0

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0−0.5−1.0−1.5−2.0−2.5−3.0−3.5−4.0

Figure: Dashed: the standard normal distribution’s CDF. Solid: the CDF of 2
p

m
(
Xm − 1

2

)
, where

m= 4.
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Example of the convergence by the CLT

Example

Let X1,X2, . . . be an infinite sequence of independently identically distributed RVs, where Xi takes
0 or +1 with probability 1

2 for each.
Then the mean and the variance of Xi are 1

2 and 1
4 , respectively.

According to the CLT, the CDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal

distribution N (0,1).

x

y
+1.0

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0−0.5−1.0−1.5−2.0−2.5−3.0−3.5−4.0

Figure: Dashed: the standard normal distribution’s CDF. Solid: the CDF of 2
p

m
(
Xm − 1

2

)
, where

m= 16.
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Example of the convergence by the CLT

Example

Let X1,X2, . . . be an infinite sequence of independently identically distributed RVs, where Xi takes
0 or +1 with probability 1

2 for each.
Then the mean and the variance of Xi are 1

2 and 1
4 , respectively.

According to the CLT, the CDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal

distribution N (0,1).
Note that the CLT is about the CDF, but NOT about the PDF. The convergence of the PDF does
not always hold. Specifically, in the above case, Xm is a discrete random variable since each Xi is.
Hence, the random variable 2

p
m

(
Xm − 1

2

)
does not have a PDF. Therefore, we CANNOT say that

the PDF of 2
p

m
(
Xm − 1

2

)
converges to that of the standard normal distribution.
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The implications of the CLT

• The error Xm −µ in estimating the true mean µ is almost proportional to 1p
m . In

particular, the more data points, the more accurate the estimate is.

• The sum of sufficiently many independent random variables approximately follows a
normal distribution. In particular, various types of random variables decomposable to
many independent factors follow a normal distribution. This is why the normal
distribution appears everywhere in the real world.
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Outline

4 Sample Statistics

Estimation of distribution and parametric model
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Estimation of a distribution

We have estimated the expectation only. In real applications, we might want to estimate
the distribution itself. However, if the support of the distribution is an infinite set10, it is not
practical to determine a PMF or PDF from finite data points with no assumptions.

We often assume that the distribution is in a parametric model, which is a set of
distributions parametrized by a few values.

10This is almost always the case if we consider a continuous RV
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Parametric model

Definition (A parametric model)

• A discrete parametric model on support X ⊂Rn is a pair of a parameter set Θ⊂Rk and a
parametrized PMF P : X ×Θ→ [0,1] such that P(x;θ) is a PMF on X as a function of x for all
θ ∈Θ.

• A continuous parametric model on support Rn is a pair of a parameter set Θ⊂Rk and a
parametrized PDF p :Rn ×Θ→R≥0 such that p(x;θ) is a PDF on Rn as a function of x for all
θ ∈Θ.

Here, the nonnegative integer k is the dimension of the parameter.

When we have a parametric model, estimating a parameter corresponds to estimating a
distribution.
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Parametric model example 1: Bernoulli distribution

Example (Bernoulli distribution)

The Bernoulli distribution11 is a discrete parametric model with a sole parameter, which is usually
denoted by θ. The support and the parameter set are X = {0,1} and Θ= [0,1], respectively. The
parametrized PMF P(x;θ) is given by P(1;θ)= θ. Thus, we have P(0;θ)= 1−θ.

Theorem

The mean and the variance of a RV following the Bernoulli distribution with the parameter θ are θ

and θ(1−θ), respectively.

11A parametric model is often called like the XXX distribution, but it is, indeed, a parametrized set of distributions.
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Parametric model example 2: normal distribution

Example (Normal distribution)

The normal distribution, also known as the Gaussian distribution, is a continuous parametric
model, which has mean parameter µ ∈R and variance parameter σ2 ∈R>0. That is, the parameter

set is Θ=R×R>0. The parametrized PDF p
(
x;µ,σ2)

is given by p
(
x;µ,σ2)= 1p

2πσ2 exp
(
− (x−µ)2

2σ2

)
.

Theorem

The mean and the variance of a RV following the normal distribution with mean parameter µ and
variance parameter σ2 are µ and σ2, respectively.
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PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ= 1,σ= 1, Dashed: µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ=−2,σ= 1, Dashed: µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ= 0,σ= 0.5, Dashed: µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ= 0,σ= 2.0, Dashed: µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ= 2,σ= 0.5, Dashed: µ= 0,σ= 1).

The mean, the variance, and the standard deviation are µ, σ2, and σB
p
σ2, respectively.© SUZUKI, Atsushi 245



PDF of the normal distribution

The normal distribution, also known as the Gaussian distribution with a mean
parameter µ ∈R and a variance parameter σ2 ∈R>0 is a distribution with the following
PDF:

p(x)= 1p
2πσ2

exp

(
−

(
x−µ

)2

2σ2

)
. (100)

x

y

O

+0.5

+0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5−0.5−1.0−1.5−2.0−2.5−3.0−3.5

Figure: Normal distributions’ PDF (Solid: µ= 2,σ= 0.5, Dashed: µ= 0,σ= 1).

The PDF is symmetric about x=µ and it is dense around x=µ.© SUZUKI, Atsushi 245
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4 Sample Statistics

Likelihood
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Likelihood

To determine a parameter of a parametric model from data points, we quantify how
“likely” the distribution indicated by a parameter is correct.

When we have a PMF or PDF of a distribution, we simply define the value of the PMF or
PDF of the data points as the likelihood of the distribution.

Definition (Likelihood of a discrete parametric model)

Let P(·; ·) be a discrete parametric model with a parameter set Θ and x1,x2, . . . ,xm be values of
data points.
Then the likelihood of P(·;θ) (or often called the likelihood of the parameter θ) is defined as the
following product.

P(x1;θ) ·P(x2;θ) · · · · ·P(xm;θ). (101)
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Likelihood

To determine a parameter of a parametric model from data points, we quantify how
“likely” the distribution indicated by a parameter is correct.

When we have a PMF or PDF of a distribution, we simply define the value of the PMF or
PDF of the data points as the likelihood of the distribution.

Definition (Likelihood of a continuous parametric model)

Let p(·; ·) be a continuous parametric model with a parameter set Θ and x1,x2, . . . ,xm be values of
data points.
Then the likelihood of p(·;θ) (or often called the likelihood of the parameter θ) is defined as the
following product.

p(x1;θ) ·p(x2;θ) · · · · ·p(xm;θ). (101)
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Examples of likelihood calculation

Suppose that we have data points (x1,x2,x3,x4)= (1,1,0,1), and consider the Bernoulli
distribution P(0;θ)= 1−θ,P(1;θ)= θ.

The likelihood of the Bernoulli distribution with θ on the data is given by

P(x1;θ)P(x2;θ)P(x3;θ)P(x4;θ)=P(1;θ)P(1;θ)P(0;θ)P(1;θ)= θ ·θ · (1−θ) ·θ. (102)

• The likelihood of θ = 0 is 0 ·0 · (1−0) ·0= 0.

• The likelihood of θ = 1
4 is 1

4 · 1
4 ·

(
1− 1

4
) · 1

4 = 3
256 .

• The likelihood of θ = 1
2 is 1

2 · 1
2 ·

(
1− 1

2
) · 1

2 = 1
16 = 16

256 .

• The likelihood of θ = 3
4 is 3

4 · 3
4 ·

(
1− 3

4
) · 3

4 = 27
256 .

• The likelihood of θ = 1 is 1 ·1 · (1−1) ·1= 0.

Hence, among the above three, the distribution given by θ = 3
4 most likely generates the

data sequence (x1,x2,x3,x4)= (1,1,0,1).
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Examples of likelihood calculation

Suppose that we have data points (x1,x2,x3,x4)= (1,1,0,1), and consider the Bernoulli
distribution P(0;θ)= 1−θ,P(1;θ)= θ.

The likelihood of the Bernoulli distribution with θ on the data is given by

P(x1;θ)P(x2;θ)P(x3;θ)P(x4;θ)=P(1;θ)P(1;θ)P(0;θ)P(1;θ)= θ ·θ · (1−θ) ·θ. (102)

• The likelihood of θ = 0 is 0 ·0 · (1−0) ·0= 0.

• The likelihood of θ = 1
4 is 1

4 · 1
4 ·

(
1− 1

4
) · 1

4 = 3
256 .

• The likelihood of θ = 1
2 is 1

2 · 1
2 ·

(
1− 1

2
) · 1

2 = 1
16 = 16

256 .

• The likelihood of θ = 3
4 is 3

4 · 3
4 ·

(
1− 3

4
) · 3

4 = 27
256 .

• The likelihood of θ = 1 is 1 ·1 · (1−1) ·1= 0.

Hence, among the above three, the distribution given by θ = 3
4 most likely generates the

data sequence (x1,x2,x3,x4)= (1,1,0,1).
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Examples of likelihood calculation

Suppose that we have data points (x1,x2,x3,x4)= (1,1,0,1), and consider the Bernoulli
distribution P(0;θ)= 1−θ,P(1;θ)= θ.

The likelihood of the Bernoulli distribution with θ on the data is given by

P(x1;θ)P(x2;θ)P(x3;θ)P(x4;θ)=P(1;θ)P(1;θ)P(0;θ)P(1;θ)= θ ·θ · (1−θ) ·θ. (102)

• The likelihood of θ = 0 is 0 ·0 · (1−0) ·0= 0.

• The likelihood of θ = 1
4 is 1

4 · 1
4 ·

(
1− 1

4
) · 1

4 = 3
256 .

• The likelihood of θ = 1
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2 · 1
2 ·

(
1− 1

2
) · 1

2 = 1
16 = 16

256 .

• The likelihood of θ = 3
4 is 3

4 · 3
4 ·

(
1− 3

4
) · 3

4 = 27
256 .

• The likelihood of θ = 1 is 1 ·1 · (1−1) ·1= 0.

Hence, among the above three, the distribution given by θ = 3
4 most likely generates the

data sequence (x1,x2,x3,x4)= (1,1,0,1).
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Examples of likelihood calculation

Suppose that we have data points (x1,x2,x3,x4)= (1,1,0,1), and consider the Bernoulli
distribution P(0;θ)= 1−θ,P(1;θ)= θ.

The likelihood of the Bernoulli distribution with θ on the data is given by
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256 .
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4 is 3
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4 ·
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4 = 27
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• The likelihood of θ = 1 is 1 ·1 · (1−1) ·1= 0.

Hence, among the above three, the distribution given by θ = 3
4 most likely generates the

data sequence (x1,x2,x3,x4)= (1,1,0,1).
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Probability and likelihood

The value of the product
P(x1;θ) ·P(x2;θ) · · · · ·P(xm;θ) (103)

can be interpreted as either

• the probability of the random variable sequence taking the value sequence
x1,x2, . . . ,xm, i.e., a function of a value sequence, or

• the likelihood of the distribution determined by the parameter θ, i.e., a function of a
distribution (or parameter).

In other words, the above product is the probability (or the probability density for
continuous distribution case) if we interpret it as a function of a value sequence, and the
likelihood if we interpret it as a function of a distribution (or a parameter).
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Outline

4 Sample Statistics

Maximum likelihood estimator
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Maximum likelihood estimator

Once we define the likelihood of a distribution, all we need to do is find a parameter that
maximizes the likelihood.

The parameter vector that maximizes the likelihood is called the maximum likelihood
estimator (MLE).

Definition (Maximum likelihood estimator)

Let P(·; ·) be a discrete parametric model with a parameter set Θ and x1,x2, . . . ,xm be values of
data points.
The parameter vector θ is called a maximum likelihood estimator (MLE) if it maximizes the
likelihood

P(x1;θ) ·P(x2;θ) · · · · ·P(xm;θ). (104)

If there is a unique MLE, we often denote it by θ̂.
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MLE maximizes the score and minimizes the negative log likelihood

For a parameter vector θ, the following is equivalent12.

• The parameter vector θ maximizes the likelihood function

P(x1;θ) ·P(x2;θ) · · · · ·P(xm;θ). (105)

• The parameter vector θ maximizes the log-likelihood function

logP(x1;θ)+ logP(x2;θ)+·· ·+ logP(xm;θ). (106)

• The parameter vector θ minimizes the negative log likelihood function

− logP(x1;θ)− logP(x2;θ)−·· ·− logP(xm;θ). (107)

12It follows since log is an increasing function. It holds regardless of the base of the logarithm.
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Why do we consider the logarithm of the likelihood?

• The likelihood is a product and its logarithm is a sum. When we maximize it in a
computer, we rely on its derivative (gradient descent methods). Differentiation of a
sum is much easier than that of a product, so the (negative) log-likelihood has an
advantage over the original likelihood from the optimization viewpoint.

• If the data size m is large, the absolute value of the likelihood, the product of many
small values, tends to be too small to represent in a computer (underflow). Since the
logarithm sees the power index, it can handle extremely small likelihood.

• The negative log-likelihood can be interpreted as the sum of the errors. For
example, we can interpret the negative log-likelihood of the normal distribution as
the squared error.
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The MLE of the normal distribution minimizes the square error.

Let p(x;θ)= 1p
2πσ2 exp

(
− (x−µ)2

2σ2

)
. Then, the negative (natural) log-likelihood of the data

sequence is given by

log
(
2πσ2)+ (

x1 −µ
)2

2σ2 + log
(
2πσ2)+ (

x2 −µ
)2

2σ2 +·· ·+ log
(
2πσ2)+ (

xm −µ
)2

2σ2

=m log
(
2πσ2)+ 1

2σ2

[(
x1 −µ

)2 + (
x2 −µ

)2 +·· ·+ (
xm −µ

)2
]
.

(108)
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The MLE of the normal distribution minimizes the square error.

Let p(x;θ)= 1p
2πσ2 exp

(
− (x−µ)2

2σ2

)
. Then, the negative (natural) log-likelihood of the data

sequence is given by

log
(
2πσ2)+ (

x1 −µ
)2

2σ2 + log
(
2πσ2)+ (

x2 −µ
)2

2σ2 +·· ·+ log
(
2πσ2)+ (

xm −µ
)2

2σ2

=m log
(
2πσ2)+ 1

2σ2

[(
x1 −µ

)2 + (
x2 −µ

)2 +·· ·+ (
xm −µ

)2
]
.

(108)

When we minimize the above with respect to µ, we can ignore the gray parts.

In this sense, the MLE of the mean parameter of the normal distribution model is
equivalent to minimizing the squared error.
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MLE example: Bernoulli case

Example

Suppose that we have data points x1,x2, . . . ,xm, and consider the Bernoulli distribution
P(0;θ)= 1−θ,P(1;θ)= θ.
The negative log-likelihood of the Bernoulli distribution with θ on the data is given by

− logP(x1;θ)P(x2;θ) . . .P(xm;θ)=m0 log(1−θ)+m1 logθ, (109)

where m0 and m1 are the numbers of zeros and ones in the data sequence. Obviously,
m0 +m1 =m, and the sample mean x= m1

m . Let l denote the above negative log-likelihood.
Suppose that m0 , 0 and m1 , 0, then l takes the minimum13 if and only if θ = m1

m = x. Hence, the
MLE θ̂ = m1

m = x.
For example, if (x1,x2,x3,x4)= (1,1,0,1), then θ̂ = m1

m = x= 3
4 .

13To prove it, differentiate the loss by θ and apply the first derivative test.
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Why can we justify the maximum likelihood estimator (MLE)?

Similar to the sample mean, if data points are generated by a distribution indicated by a
parameter vector in the parameter set of a parametric vector, the MLE has the following
properties:

• Consistency : The MLE converges to the true parameter as m→∞.

• Asymptotic normality : An appropriately scaled MLE’s distribution converges to a
normal distribution, and its error is proportional to 1p

m for sufficiently large m.
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Outline

4 Sample Statistics

Exercises

© SUZUKI, Atsushi 257



Exercise (Normal Distribution Arising from Physical Phenomena)

In the following, we consider the left-right directional velocity v (positive for rightward direction) of
object A after being collided by m particles from either side, assuming that object A’s initial
velocity is 0.
Each particle collides with object A from the left with a probability of 0.5, increasing object A’s
velocity by c, and from the right with a probability of 0.5, decreasing object A’s velocity by c.
Moreover, the behavior of each particle is independent of others. Assuming that Newton’s first law
of motion holds ideally, and no other factors alter object A’s velocity except for the collisions of the
particles. (1) For m= 2, find Pr(v=−2c), Pr(v=+2c), and Pr(v= 0).
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Exercise (Normal Distribution Arising from Physical Phenomena)

In the following, we consider the left-right directional velocity v (positive for rightward direction) of
object A after being collided by m particles from either side, assuming that object A’s initial
velocity is 0.
Each particle collides with object A from the left with a probability of 0.5, increasing object A’s
velocity by c, and from the right with a probability of 0.5, decreasing object A’s velocity by c.
Moreover, the behavior of each particle is independent of others. Assuming that Newton’s first law
of motion holds ideally, and no other factors alter object A’s velocity except for the collisions of the
particles. (2) Next, we examine situations where particles are extremely small and numerous,
akin to molecules in the atmosphere. Mathematically, this corresponds to scenarios where c is
small and m is large. When c= 4p

m , according to the central limit theorem, the cumulative
distribution function (CDF) of v converges in the limit as m→+∞ to the CDF of a normal
distribution with expectation µ and variance σ2. Here, find µ and σ2.
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Example answer:

Define the discrete random variable Xi as Xi =+1 when the ith particle increases the
velocity of object A (positive for rightward direction) and Xi =−1 when it decreases the
velocity.

(1) Pr(v=−2c)=Pr(X1 =−1∧X2 =−1)=Pr(X1 =−1)Pr(X2 =−1)= 0.5 ·0.5= 0.25. The
second equality follows from the independence of X1 and X2. Similarly,
Pr(v=+2c)=Pr(X1 =+1∧X2 =+1)=Pr(X1 =+1)Pr(X2 =+1)= 0.5 ·0.5= 0.25.

v= 0 occurs either when X1 =−1 and X2 =+1, or when X1 =+1 and X2 =−1. Therefore,
Pr(v= 0)=Pr((X1 =−1∧X2 =+1)∨ (X1 =+1∧X2 =−1))=Pr(X1 =−1)Pr(X2 =
+1)+Pr(X1 =+1)Pr(X2 =−1)= 0.5 ·0.5+0.5 ·0.5= 0.5.
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Example answer:

(2) According to the central limit theorem, for an infinite sequence of i.i.d. random
variables X1,X2, . . . with expectation µ and variance σ2, the cumulative distribution

function (CDF) of Ym = p
m

Xm −µ

σ
converges to the CDF of a standard normal

distribution at every point. Here, Xm = 1
m

∑m
i=1 Xi represents the sample mean. Restating

the claim of the central limit theorem, the CDF of Y ′
m = p

m(Xm −µ) converges at every
point to the CDF of a normal distribution with expectation 0 and variance σ2.

Transforming v into a form conducive to the application of the central limit theorem yields

v=
m∑

i=1
cXi = 1p

m

m∑
i=1

4Xi =
p

m

(
1
m

m∑
i=1

4Xi −µ

)
,

where µ= 0 is the expectation of 4Xi, and the variance of 4Xi is 16 (see next page).
Thus, by applying the central limit theorem to the sequence of random variables
4X1,4X2, . . ., it can be inferred that the CDF of v converges to the CDF of a normal
distribution with expectation 0 and variance 16 as m→+∞.
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Example answer:

The reason for the variance of 4Xi being 16 is as follows. The random variable Xi takes
−1 or +1 with the probability of 0.5 for each. Hence, 4Xi takes −4 or +4 with the
probability of 0.5 for each. The expectation is given by E4Xi = 0.5 · (−1)+0.5 · (+1)= 0.
The variance is given by V4Xi = 0.5 · (−4−0)2 +0.5 · (+4−0)2 = 16.
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Example answer:

This example illustrates how, in the presence of numerous small-scale phenomena, their
sum approximates a normal distribution. This is why the normal distribution holds a
special place in statistics for applications in the natural and social sciences.
Furthermore, due to the significance of the normal distribution, the descriptive
statistics characterizing it, such as expectation and variance, are of particular
importance compared to other descriptive statistics.
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Exercise (CLT)

Consider an infinite sequence of independently and identically distributed (i.i.d.) random variables
X1,X2, . . ., each with an expected value µ and variance σ2. Define the sample mean Xm =

∑m
i=1 Xi
m

and the standardized variable Ym =
p

m(Xm−µ)
σ

.
Additionally, let Z be a standard normal variable, independent of X1,X2, . . ., with its probability
density function denoted by pZ, and its cumulative distribution function by FZ.
Assess whether the following statements are correct or wrong, based on the central limit theorem.

(1) Regardless of the probability distribution of Xi, for m= 1,2, . . ., the variable Ym has a
probability density function, denoted as pYm (x), and choosing it appropriately, for any x ∈R,
limm→+∞pYm (x)= pZ(x). Correct or wrong?
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Exercise (CLT)

Consider an infinite sequence of independently and identically distributed (i.i.d.) random variables
X1,X2, . . ., each with an expected value µ and variance σ2. Define the sample mean Xm =

∑m
i=1 Xi
m

and the standardized variable Ym =
p

m(Xm−µ)
σ

.
Additionally, let Z be a standard normal variable, independent of X1,X2, . . ., with its probability
density function denoted by pZ, and its cumulative distribution function by FZ.
Assess whether the following statements are correct or wrong, based on the central limit theorem.

(2) Regardless of the probability distribution of Xi, for m= 1,2, . . ., the variable Ym has a
cumulative distribution function, denoted as FYm , and for any x ∈R, limm→+∞FYm (x)=FZ(x).
Correct or wrong?
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Exercise (CLT)

Consider an infinite sequence of independently and identically distributed (i.i.d.) random variables
X1,X2, . . ., each with an expected value µ and variance σ2. Define the sample mean Xm =

∑m
i=1 Xi
m

and the standardized variable Ym =
p

m(Xm−µ)
σ

.
Additionally, let Z be a standard normal variable, independent of X1,X2, . . ., with its probability
density function denoted by pZ, and its cumulative distribution function by FZ.
Assess whether the following statements are correct or wrong, based on the central limit theorem.

(3) Regardless of the probability distribution of Xi, for any a,b ∈R with a< b,
limm→+∞Pr(a<Ym ≤ b)=Pr(a<Z≤ b). Correct or wrong?
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Example answer:

(1) Wrong. The Central Limit Theorem does not guarantee that the sum or average of
i.i.d. random variables, Xm or Ym, have probability density functions. In fact, when Xi are
discrete random variables, Xm and Ym also remain discrete and thus do not possess
probability density functions.

(2) Correct. This is a standard expression of the Central Limit Theorem using the
cumulative distribution function (CDF). It is worth noting that a CDF is defined for any
random variable.

(3) Correct. By definition of the CDF, Pr(a<Ym ≤ b)=FYm(b)−FYm(a), and this
difference converges to FZ(b)−FZ(a) due to the Central Limit Theorem (using the CDF
expression), which is equal to Pr(a<Z≤ b).
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Exercise (Cauchy distribution)

In this problem, we define the inverse function of tan restricted to the open interval (−π
2 ,+π

2 ) as
arctan. That is, for y ∈R, y= arctanx is defined as the unique y ∈ (−π

2 ,+π
2 ) that satisfies tany= x.

It is known that d
dx arctan(x)= 1

x2+1 .
Let the random variable X have the probability density function pX defined as follows:

pX (x)= 1
π

1
x2 +1

(1) Evaluate Pr(1≤X ≤ p
3).

(2) Considering pX (x) is an even function, meaning pX (−x)= pX (x), evaluate the median of X.
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Exercise (Cauchy distribution)

Let the random variable X have the probability density function pX defined as follows:

pX (x)= 1
π

1
x2 +1

(3) To calculate the expected value of X, we evaluate the improper integral
∫+∞

−∞
xpX (x)dx.

(3-1) Consider the following two definite integrals, keeping in mind that xpX (x) is an odd function,

i.e., (−x)px(−x)=−xpx(x). Find the value of lim
t→+∞

∫+t

−t
xpX (x)dx.
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Exercise (Cauchy distribution)

Let the random variable X have the probability density function pX defined as follows:

pX (x)= 1
π

1
x2 +1

(3) To calculate the expected value of X, we evaluate the improper integral
∫+∞

−∞
xpX (x)dx.

(3-2) Find the value of lim
a→−∞

∫0

a
xpX (x)dx+ lim

b→+∞

∫b

0
xpX (x)dx.
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Exercise (Cauchy distribution)

Let the random variable X have the probability density function pX defined as follows:

pX (x)= 1
π

1
x2 +1

(3) To calculate the expected value of X, we evaluate the improper integral
∫+∞

−∞
xpX (x)dx.

(3-3) Write down the definition of
∫+∞

−∞
xpX (x)dx.
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Exercise (Cauchy distribution)

Let the random variable X have the probability density function pX defined as follows:

pX (x)= 1
π

1
x2 +1

(3) To calculate the expected value of X, we evaluate the improper integral
∫+∞

−∞
xpX (x)dx.

(3-4) Find the expected value of X.
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Exercise (Cauchy distribution)

(4) Given a sequence of mutually independent random variables X1,X2,X3, . . . with the same
distribution as X, define the random variable Xm = 1

m
∑m

1 Xi for m= 1,2, . . .. Choose the correct
statement from the following options:

• According to the law of large numbers (strong form), it can be stated that the event Xm → 0
occurs with probability 1.

• According to the law of large numbers (strong form), there exists some positive number c
such that the event Xm → c occurs with probability 1.

• According to the law of large numbers (strong form), there exists some negative number c
such that the event Xm → c occurs with probability 1.

• The law of large numbers does not apply to the behavior of Xm.
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Example answer:

(1) Pr(1≤X ≤
p

3)=
∫p

3

1
pX (x)dx=

∫p
3

1

1
π

1
x2 +1

dx Using the fact that

d
dx

arctan(x)= 1
x2 +1

, this can be calculated as follows:∫p
3

1

1
π

1
x2 +1

dx= 1
π

[arctanx]
p

3
1 = 1

π
(
π

3
− π

4
)= 1

12
.

(2) Given that pX is an even function,
∫0

−∞
pX (x)dx=

∫+∞

0
pX (x)dx. Thus,

Pr(X ≤ 0)=Pr(X ≥ 0). Therefore, the median is 0.
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Example answer:

(3-1) Since xpX (x) is an odd function, for any t,
∫+t

−t
xpX (x)dx= 0. Therefore,

lim
t→+∞

∫+t

−t
xpX (x)dx= 0.

(3-2) To evaluate lim
a→−∞

∫0

a
xpX (x)dx, consider

∫0

a
xpX (x)dx= 1

π

∫0

a

x
x2 +1

dx. Using the

substitution u= x2 +1, the integral can be calculated as∫0

a

x
x2 +1

dx=
∫1

a2+1

1
2u

du= [lnu]1
a2+1 =− ln

(
a2 +1

)
. Therefore, lim

a→−∞

∫0

a
xpX (x)dx=−∞.

Similarly, evaluating lim
b→+∞

∫b

0
xpX (x)dx results in

lim
b→+∞

∫b

0
xpX (x)dx= lim

b→+∞
ln

(
b2 +1

)=+∞, diverging. Hence,

lim
a→−∞

∫0

a
xpX (x)dx+ lim

b→+∞

∫b

0
xpX (x)dx forms a −∞+∞ shape and is not defined as a

finite real number.
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Example answer:

(3-3) Since the improper integral
∫+∞

−∞
xpX (x)dx is defined as

lim
a→−∞

∫0

a
xpX (x)dx+ lim

b→+∞

∫b

0
xpX (x)dx, this improper integral is undefined, and thus the

expected value of X is not defined as a finite real number.

(3-4) According to (3-3), X does not have an expectation.

(4) Since Xi does not have an expected value, the law of large numbers cannot be
applied to describe the behavior of Xm.
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Exercise (Likelihood and MLE)

Given a sequence of data points (x1,x2,x3,x4)= (1,1,0,1), consider the likelihood under a discrete
parametric probability model, the Bernoulli distribution, where P(0;θ)= (1−θ) and P(1;θ)= θ.
Evaluate the likelihood for θ = 1

4 , 2
4 , 3

4 .
Also, find the maximum likelihood estimate (MLE).
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Example answer:

Discrete parametric probability models have parameters, and fixing these parameters
defines a probability mass function. Representing the probability mass function
determined by parameter θ as P(·;θ), the likelihood for a sequence of data points
(x1,x2,x3,x4) is defined as

∏4
i=1 P(xi;θ)=P(x1;θ)P(x2;θ)P(x3;θ)P(x4;θ).

Therefore, the likelihood for θ = 1
4 is

∏4
i=1 P(xi; 1

4 )= 1
4 · 1

4 · 3
4 · 1

4 = 3
256 , the likelihood for θ = 2

4
is

∏4
i=1 P(xi; 2

4 )= 2
4 · 2

4 · 2
4 · 2

4 = 16
256 , and the likelihood for θ = 3

4 is∏4
i=1 P(xi; 3

4 )= 3
4 · 3

4 · 1
4 · 3

4 = 27
256 .

The maximum likelihood estimator is the parameter θ that maximizes the likelihood. For
this problem, we consider maximizing the likelihood function∏4

i=1 P(xi;θ)= θ ·θ · (1−θ) ·θ = θ3(1−θ). Maximizing this likelihood function is equivalent to
maximizing 4

√
θ3[3(1−θ)] due to the monotonicity of the fourth root function. By the

inequality of arithmetic and geometric means, 4
√

θ3[3(1−θ)]≤ 1
4 (θ+θ+θ+3(1−θ))= 3

4 ,
and equality holds when θ = 3(1−θ), that is, when θ = 3

4 . Therefore, the likelihood function
reaches its maximum value when θ = 3

4 . This is the maximum likelihood estimator.
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Statistical tests support our judgements

In real applications (e.g., physical, engineering, medical, etc.), we need to judge from
data whether a phenomenon happens or not.

Specifically, for some summary statistics or parameter θ and a set H1, we often want to
judge from data points whether θ ∈H1 or not.

For example, if we investigate the purity of a factory’s chemical product, we might want to
know whether the true expectation µ of the purity is the same as the purity µ0 of the
natural material or not.

In this case, H1 = [0,1]\
{
µ0

}
, and we want to discuss whether θ ∈H1 or not.

Statistical tests give us a framework to make such a judgement.
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Learning outcomes

By the end of this section, you should be able to:

• Explain the logic of statistical tests

• Explain the definitions of p-value, significance level, type-I error, and type-II error.

• Make a judgment from data using statistical tests
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We cannot directly prove that “the hypothesis is correct.”

What we want to “prove” is the following statement: “if the data points’ values are
x1,x2, . . . ,xm, then θ ∈H1,” in some probability theory sense.

A naïve idea is to evaluate the “probability” of θ ∈H1 when the data points’ values are
x1,x2, . . . ,xm.

However, in (frequentism) statistics, we cannot discuss the probability of a parameter θ
being in a set since a parameter θ is not a random variable, while it regards data points
x1,x2, . . . ,xm as values of random variables.

In contrast, we can discuss the other direction, that is, given a parameter θ, we can
discuss the probability of the random variables taking the given values x1,x2, . . . ,xm.

So, we take the contraposition of the statement that we originally wanted to prove.
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The fundamental logic of statistical test

The contraposition of “if the data points’ values are x1,x2, . . . ,xm, then θ ∈H1,” is:

“If θ ∉H1, then the data points’ values are NOT x1,x2, . . . ,xm.”

Hence, discussing the event θ ∉H1 is essential.

Let H be the set of all the possible values that θ can take and define H0BH \H1.

The event θ ∉H1, which we focus on, is equivalent to θ ∈H0.

Hence, H0 plays an essential role in statistical tests. H0 is called the null hypothesis
and H1 is called the alternative hypothesis.

In statistical tests, a hypothesis is a set of values that the variable θ, which we are
interested in, may take.
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Test statistics

Our starting point is to assume θ ∉H1, or equivalently, θ ∈H0. Our objective is that the
data points x1,x2, . . . ,xm “contradict in a probability theory sense” the assumption.

To judge whether a “contradiction” happens, we evaluate a summary statistic of the
empirical distribution. Such a summary statistic is called a test statistic. The test statistic
is a RV since it is a function of the data points, which are the values of RVs. Hence, the
distribution of a test statistic is determined if we fix a distribution of the data points.

For a distribution corresponding to H0, if the value of the test statistic is unlikely taken on
the distribution (i.e. if a “probabilistic contradiction” happens), then we can conclude that
the data points are not generated by the distribution. That is, we can conclude θ ∉H0,
i.e., θ ∈H1. This is the basic idea of the statistical test.
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Terminology: rejecting and accepting a hypothesis

• We say that we reject a hypothesis when we conclude that the true distribution is
not in the distributions corresponding to the hypothesis.

• We say that we accept a hypothesis when we conclude that the true distribution is
in the distributions corresponding to the hypothesis.
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Example: are our products better?

We are going to compose a component purer than a natural one. Suppose that the purity
of a natural one is 92% on average.

Our factory composed a component 8 times and the purity was the following:

Trial 1 2 3 4 5 6 7 8
Purity 95 93 94 94 92 93 91 96

Table: 8 trial results of our factory

Are our factory’s products better than natural ones on average?

The sample mean of the factory’s products is 93.5, which is better than 92, the natural
components average. Could we conclude that our factory’s products are better than
natural components?
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What’s our concern?

The sample mean of the factory’s products is 93.5, which is better than 92, the natural
components average.

A possible bad story is that the true mean µ0 is not larger than 92, but the sample mean
was “luckily” 93.5, better than 92, owing to its stochastic behavior. This is our concern.

Hence, we consider how likely this bad story can happen by "luck."
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t-test about the true expectation

Suppose that X1,X2, . . . ,Xm are random variables independently and identically following
the normal distribution with an unknown true expectation µ and variance σ2.

We want to see whether or not the true mean equals a value µ0. That is, the null
hypothesis is H0 =

{
µ0

}
.

Following the idea of the statistical test, we evaluate whether or not those random
variables’ values are extreme under the null hypothesis µ=µ0. For this purpose, we
consider the following value, called t-statistic.

tB
p

m
X −µ0

u
, (110)

where X and u are the sample mean and sample standard deviation defined by

XB
1
m

m∑
i=1

Xi, uB

√
1

m−1

(
Xi −X

)2
, (111)
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t-distribution

Suppose that X1,X2, . . . ,Xm are independently and identically following a normal
distribution. Then, t follows the t-distribution with m−1 degree of freedom, whose PDF
pm−1 is illustrated as follows.

x

y

O

Figure: Black solid curve: the PDF of the t-distribution with 1 degree of freedom.
Black dotted curve: the PDF of the standard normal distribution.

The t-distribution’s PDF is symmetric and similar to the standard normal distribution’s
PDF but has a larger probability of taking extremely large or small values.

As m increases, the PDF converges to the standard normal distribution’s PDF.
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t-distribution

Suppose that X1,X2, . . . ,Xm are independently and identically following a normal
distribution. Then, t follows the t-distribution with m−1 degree of freedom, whose PDF
pm−1 is illustrated as follows.

x

y

O

Figure: Black solid curve: the PDF of the t-distribution with 2 degree of freedom.
Black dotted curve: the PDF of the standard normal distribution.

The t-distribution’s PDF is symmetric and similar to the standard normal distribution’s
PDF but has a larger probability of taking extremely large or small values.

As m increases, the PDF converges to the standard normal distribution’s PDF.
© SUZUKI, Atsushi 279



t-distribution

Suppose that X1,X2, . . . ,Xm are independently and identically following a normal
distribution. Then, t follows the t-distribution with m−1 degree of freedom, whose PDF
pm−1 is illustrated as follows.

x

y

O

Figure: Black solid curve: the PDF of the t-distribution with 3 degree of freedom.
Black dotted curve: the PDF of the standard normal distribution.

The t-distribution’s PDF is symmetric and similar to the standard normal distribution’s
PDF but has a larger probability of taking extremely large or small values.

As m increases, the PDF converges to the standard normal distribution’s PDF.
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Note: The specific form of the t-distribution.

The PDF pm−1(x) of the t-distribution with m−1 degree of freedom is given by

pm−1(x)= Γ
(m

2
)

p
(m−1)πΓ

(m−1
2

)(
1+ x2

m−1

)−m
2

(112)

where Γ(z)B
∫∞

0 sz−1 exp(−s)ds.
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t-test is not limited to the one about the true expectation.

We have focused on a statistical test about the true expectation.

In general, a statistic is called a t statistic if it follows the t distribution. Also, a statistical
test using a t statistic is called a t test. Hence, if you find a t test in another context, it
might not be about the true expectation. It is always essential to confirm what the null
hypothesis is and what the alternative hypothesis is in the context you are interested in.
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p-value

How do we determine the unlikeliness of the value of the test statistic?

As a criterion of the unlikeliness of the statistic’s value, we consider the probability of the
statistic taking a more extreme value 14. The probability is called the p-value. A small
p-value indicates that the value of the statistic takes an extreme value.

14Hence, we need to define in which case the value of the statistic is extreme. Although it is intuitive for well-known cases, there does not seem to be a way
to mathematically decide it.
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p-value in t-test

The t-statistic takes zero if X =µ. In non-extreme cases, where the sample mean X is
around the mean µ, t is around zero. If extreme cases, where the sample mean X is
distant from the mean µ, |t| takes a large value. The larger |t|, the more extreme.

Here, when t-statistic takes a value t0, we define its p-value by

p=Pr(|t| > |t0|). (113)

x

y

O 1.2

Figure: The p-value (the gray area) when t takes t0 = 1.2.
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p-value in t-test

The t-statistic takes zero if X =µ. In non-extreme cases, where the sample mean X is
around the mean µ, t is around zero. If extreme cases, where the sample mean X is
distant from the mean µ, |t| takes a large value. The larger |t|, the more extreme.

Here, when t-statistic takes a value t0, we define its p-value by

p=Pr(|t| > |t0|). (113)

x

y

O−0.6

Figure: The p-value (the gray area) when t takes t0 =−0.6.
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p-value in t-test

The t-statistic takes zero if X =µ. In non-extreme cases, where the sample mean X is
around the mean µ, t is around zero. If extreme cases, where the sample mean X is
distant from the mean µ, |t| takes a large value. The larger |t|, the more extreme.

Here, when t-statistic takes a value t0, we define its p-value by

p=Pr(|t| > |t0|). (113)

x

y

O 2.5

Figure: The p-value (the gray area) when t takes t0 = 2.5.
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Significance level

We reject a hypothesis consisting of a single distribution if the p-value of the distribution
on the data points is small15.

Now, how small should the threshold, called the significance level be?

There is no mathematical reason to determine it.

There is a convention to set the threshold at 0.05.

That is,

• If p-value is larger than 0.05, then we do not reject the null hypothesis H0.

• If p-value is smaller than 0.05, then we reject the null hypothesis and accept the
alternative hypothesis H1.

15We reject a hypothesis consisting of multiple distributions if we can reject the hypothesis consisting of any distribution in the original hypothesis
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Statistical test procedure

The standard procedure of the statistical test is the following.

• Step 1:

Set the null hypothesis and alternative hypothesis. Also, fix the significance
level α (usually 0.05 or 0.005) and determine which statistic to use. For example, if
we are interested in the true expectation, the null hypothesis is µ=µ0, where µ is the
unknown true expectation and µ0 is a value, which we decide. The alternative
hypothesis is µ,µ0. We can use t statistic.

• Step 2:

Calculate the statistic. For example, in the t-test, calculate t=
p

m
(
X−µ0

)
u .

• Step 3:

Evaluate the p-value from the value of the statistic. For example, in the
t-test, we can evaluate p-value by referring to t-tables.

• Step 4:

If p<α, then we reject the null hypothesis and accept the alternative
hypothesis. If p≤α, we can neither reject nor accept a hypothesis.
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t-test example

Example

Our factory composed a component 8 times and the purity was (95,93,94,94,92,93,91,96).
Suppose that the purity of a natural one is 92% on average.
Are our factory’s products better than natural ones on average?
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t-test example

Example

Our factory composed a component 8 times and the purity was (95,93,94,94,92,93,91,96).
Suppose that the purity of a natural one is 92% on average.
Are our factory’s products better than natural ones on average?

Step 1: Set the null hypothesis and alternative hypothesis. Also, fix the significance level
α (usually 0.05 or 0.005).

The null hypothesis is µ=µ0 = 92. The alternative hypothesis is µ,µ0 = 92. Let’s use the
significance level α= 0.05.
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t-test example

Example

Our factory composed a component 8 times and the purity was (95,93,94,94,92,93,91,96).
Suppose that the purity of a natural one is 92% on average.
Are our factory’s products better than natural ones on average?

Step 2: Calculate the t-statistic.

The sample mean and standard deviation are X = 93.5 and u≈ 1.60.

The t-statistic is t=
p

m
(
X−µ0

)
u ≈ 93.5−92

1.6
2
p

2

= 2.65.
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t-test example

Example

Our factory composed a component 8 times and the purity was (95,93,94,94,92,93,91,96).
Suppose that the purity of a natural one is 92% on average.
Are our factory’s products better than natural ones on average?

Step 3: Evaluate the p-value from the value of the t-statistic.

Here, under the null hypothesis, t follows the t-distribution with 7 degrees of freedom.

Then, if t≈ 2.65, the p-value is p≈ 0.032, according to an online calculator.
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t-test example

Example

Our factory composed a component 8 times and the purity was (95,93,94,94,92,93,91,96).
Suppose that the purity of a natural one is 92% on average.
Are our factory’s products better than natural ones on average?

Step 4: Conclude from the p-value.

Since p≈ 0.032<α= 0.05, we reject the null hypothesis and accept the alternative
hypothesis.

Hence, we can statistically conclude that our factory produces better components
than natural ones.
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False positive (Type I error) and false negative (Type II error)

Statistical tests behave stochastically, so they may make a mistake. We may make two
types of mistakes:

• False positive (Type I error): Accepts the alternative hypothesis H1 when the null
hypothesis H0 is actually correct.

• False negative (Type II error): Fails to reject the null hypothesis H0 when the
alternative hypothesis H1 is actually correct.

In the simple t-test case, the type I error probability equals to the significance level α.
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Significance level, false-positive, false-negative

The false-positive rate, the possibility of accepting the alternative hypothesis when the
data points are generated by a distribution in the null hypothesis, is determined by the
significance level.

So, is it better to use a smaller significance level?

The answer is NO. It is because it increases the false-negative rate, the possibility of
failing to accept the alternative hypothesis when the data points are generated by a
distribution in the alternative hypothesis.
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Exercise (Hypothesis testing and contraposition)

Consider a fixed hypothesis H and a data sequence x1,x2, . . . ,xm. Assume that the following
conditional statement holds: "If hypothesis H holds, then the data sequence x1,x2, . . . ,xm cannot
be generated."
In this case, which of the following statements is true regardless of what the fixed hypothesis H

and data sequence x1,x2, . . . ,xm are? Choose the one that applies.

• "If hypothesis H does not hold, then the data sequence x1,x2, . . . ,xm can be generated."

• "If the data sequence x1,x2, . . . ,xm cannot be generated, then hypothesis H holds."

• "If the data sequence x1,x2, . . . ,xm can be generated, then hypothesis H does not hold."
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Example answer:

First, let’s review a basic theorem in logic. For the conditional statement "P =⇒ Q", its
converse is "Q =⇒ P", its inverse is "¬P =⇒ ¬Q", and its contrapositive is "¬Q =⇒ ¬P".
The truth of a conditional statement and its contrapositive always coincide. Thus, if the
original conditional statement is true, its contrapositive is necessarily true as well. On the
other hand, the truth of the original conditional statement and its inverse or converse do
not necessarily coincide. For example, "If x ∈ {1}, then x ∈ {0,1}" is true, but its converse
and inverse are not necessarily true.

In this question, the original conditional statement "If hypothesis H holds, then the data
sequence x1,x2, . . . ,xm cannot be generated" has its contrapositive as "If the data
sequence x1,x2, . . . ,xm can be generated, then hypothesis H does not hold", which is the
correct answer. The converse and inverse of the original conditional statement do not
necessarily hold true regardless of the details of the statement. This relationship between
the original conditional statement and its contrapositive underlies the concept of
statistical testing.
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Exercise (t-statistics)

Consider the scenario where you have a data series of length m, x1,x2, . . . ,xm ∈R. Assuming a
normal distribution as the true distribution, and considering a null hypothesis regarding the true

mean µ=µ0, where µ0 ∈R. The t-statistic is given by t= x−µ0
sm

. Here, x=
∑m

i=1 xi
m , and

sm =
√∑m

i=1(xi−x)2

m .
Let T be a random variable following a t-distribution with m−1 degrees of freedom.
How is the p-value defined from T and t in this context?
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Example answer:

The answer is p=Pr(|T| > |t|).

In the context of a t-test, the p-value is defined in a manner that directly relates to the
concept of the t-statistic’s extremeness. The p-value quantifies the probability of
observing a t-statistic as extreme as, or more extreme than, the one calculated from the
data, assuming the null hypothesis is true. This is fundamentally about assessing the
rarity of the t-statistic’s observed value under the null hypothesis. Specifically, a low
p-value indicates that the observed t-statistic is rare under the null hypothesis, suggesting
that the null hypothesis may not adequately explain the observed data. Conversely, a
high p-value suggests that the observed t-statistic is not particularly rare under the null
hypothesis, indicating that the data do not provide strong evidence against the null
hypothesis. It’s a cornerstone concept in hypothesis testing, guiding decisions on whether
the observed data significantly deviate from what is expected under the null hypothesis.
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Exercise (t-test)

In a factory, substance A is synthesized. The expected purity score of natural substance A is
µ0 = 92, and the objective is to statistically test whether the expected purity score µ of substance
A synthesized in the factory differs from the natural one. It is assumed that each synthesis of
substance A in the factory is independent, and the distribution of purity scores can be adequately
approximated by a normal distribution.
Given a sequence of m i.i.d. normal distributed random variables X1,X2, . . . ,Xm with mean µ0, the

t-statistic t= p
m Xm−µ0

sm
follows a t-distribution with m−1 degrees of freedom. Here,

Xm = 1
m

∑m
i=1 Xi is the sample mean, and sm =

√
1

m−1
∑m

i=1(Xi −Xm)2 is the sample standard
deviation. This fact forms the basis for conducting a t-test.
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Exercise (t-test)

Answer the following questions. You may use the fact that for a random variable T following a
t-distribution with 4 degrees of freedom, Pr(|T| ≥ 2.77)> 0.05>Pr(|T| ≥ 2.78).
(1) Let the null hypothesis be µ=µ0 = 92 and the alternative hypothesis be µ,µ0. After
synthesizing substance A 5 times in the factory, the purity scores were (93, 92, 93, 94, 93).
(1-1) Evaluate the value of the t-statistic.
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Exercise (t-test)

Answer the following questions. You may use the fact that for a random variable T following a
t-distribution with 4 degrees of freedom, Pr(|T| ≥ 2.77)> 0.05>Pr(|T| ≥ 2.78).
(1) Let the null hypothesis be µ=µ0 = 92 and the alternative hypothesis be µ,µ0. After
synthesizing substance A 5 times in the factory, the purity scores were (93, 92, 93, 94, 93).
(1-2) With a significance level α= 0.05, the correct treatment of the null hypothesis µ=µ0 is to
choose ONE of the following options:

• Accept the null hypothesis and do not reject it.

• Reject the null hypothesis and do not accept it.

• Accept and reject the null hypothesis.

• Neither accept nor reject the null hypothesis.
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Exercise (t-test)

Answer the following questions. You may use the fact that for a random variable T following a
t-distribution with 4 degrees of freedom, Pr(|T| ≥ 2.77)> 0.05>Pr(|T| ≥ 2.78).
(1) Let the null hypothesis be µ=µ0 = 92 and the alternative hypothesis be µ,µ0. After
synthesizing substance A 5 times in the factory, the purity scores were (93, 92, 93, 94, 93).
(1-3) Similarly, the correct treatment of the alternative hypothesis µ,µ0 is to choose ONE of the
following options:

• Accept the alternative hypothesis and do not reject it.

• Reject the alternative hypothesis and do not accept it.

• Accept and reject the alternative hypothesis.

• Neither accept nor reject the alternative hypothesis.
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Exercise (t-test)

(1-4) Moreover, for a different µ′
0 ∈R, let the null hypothesis be µ=µ′

0. The correct statement
regarding this null hypothesis is to choose ONE of the following options:

• If µ′
0 < 92, then the null hypothesis µ=µ′

0 is rejected, but there exists µ′
0 that does not lead to

rejection of the null hypothesis µ=µ′
0 and satisfies µ′

0 > 92.

• If µ′
0 > 92, then the null hypothesis µ=µ′

0 is rejected, but there exists µ′
0 that does not lead to

rejection of the null hypothesis µ=µ′
0 and satisfies µ′

0 < 92.

• If µ′
0 , 92, then the null hypothesis µ=µ′

0 is rejected.

• There exist µ′
0 > 0 and µ′′

0 < 0 that do not lead to rejection of the null hypothesis µ=µ′
0 and

µ=µ′′
0.
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Exercise (t-test)

(2) In (1), what if the purity scores were (93, 91, 93, 95, 93)?
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Example answer:

(1) The sample mean is Xm = 1
m

∑m
i=1 Xi = 93, and the sample standard deviation is

sm =
√

1
m−1

∑m
i=1(Xi −Xm)2 =

√
1
2 . Therefore, the t-statistic is t= p

5
p

2= p
10. Since

t> 2.78, the p-value is less than 0.05. This implies that, assuming the null hypothesis is
true, the probability of obtaining a data sequence as or more extreme than the one given
is low. Thus, we reject the null hypothesis (do not accept) and accept the alternative
hypothesis (do not reject).

More generally, considering a null hypothesis µ=µ′
0, the t-statistic is monotonically

decreasing with µ′
0. Therefore, for µ′

0 < 92, t> 2.78, and the p-value is less than 0.05.
This means we can statistically conclude µ> 92 rather than merely µ, 92. This approach
differs from a one-sided test, which we do not address in this lecture. However, for
µ′

0 =Xm = 93, the p-value is 1, hence the null hypothesis µ=µ′
0 is not rejected. Thus, "If

µ′
0 < 92, the null hypothesis µ=µ′

0 is rejected, but there exists µ′
0 > 92 for which the null

hypothesis is not rejected." is correct.
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Example answer:

(2) The sample mean is Xm = 1
m

∑m
i=1 Xi = 93, and the sample standard deviation is

sm =
√

1
m−1

∑m
i=1(Xi −Xm)2 = p

2. Therefore, the t-statistic is t= p
5 1p

2
= p

5/2. Since
0< t< 2.77, the p-value exceeds 0.05. This indicates that, even assuming the null
hypothesis, the probability of obtaining a data sequence as or more extreme than the one
given is sufficiently high. Hence, neither the null hypothesis nor the alternative hypothesis
can be rejected or accepted based on this data alone.

More generally, considering a null hypothesis µ=µ′
0, the t-statistic is continuous with

respect to µ′
0, and so is the p-value. Thus, slightly increasing or decreasing µ′

0 around 92
does not lead to rejection of the null hypothesis µ=µ′

0, as the p-value remains above
0.05. Therefore, "There exists µ′

0 < 92 and µ′
0 > 92 for which the null hypothesis µ=µ′

0 is
not rejected." is correct.
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